

K16U 0517

Reg. No. :

Name :

IV Semester B.C.A. Degree (CCSS – Supple./Imp.) Examination, May 2016 COMPLEMENTARY COURSE IN MATHEMATICS FOR BCA 4C04 MAT (BCA) : Operation Research (2013 and Earlier Admissions)

Time: 3 Hours

Max. Weightage: 30

Answer all questions. Weightage for a bunch of 4 questions is 1.

1. Fill in the blanks :

- a) Any feasible solution which optimizes the objective function is called its ______
- b) A basic feasible solution of a linear programming problem is said to be _______ if at least one of the basic variables is zero.
- c) The shadow price is also called _____
- d) An assignment problem is called an ______assignment problem whenever the number of tasks is not equal to the number of facilities.
- e) Usually a job or task requires time and cost. But there are certain activities which do not take time or resources. They are known as ______ activities.
- f) The name of the probability distribution used in PERT which estimates the expected duration and expected variance of the activity is _____
- g) The dynamic programming technique was developed by _____ in 1950.
- is a problem of determining an appropriate order for a series of jobs to be done on a finite number of service facilities so as to minimise the total time taken for finishing all the jobs. (Wt. 2×1=2)

Answer any 6 questions (Weightage 1 each).

- 2. What are slack and surplus variables ?
- 3. Give the economic interpretation of dual.
- 4. Distinguish between CPM and PERT.

K16U 0517

-2-

5. Write the mathematical formulation of a TP.

- 6. What is meant by travelling sales man problem ?
- 7. What do you understand by degeneracy in transportation problem ?
- 8. Write any 4 characteristic of DPP.
- 9. Give the difference between DP and LP.
- 10. What are the assumptions in sequencing problem ?

(Wt. 6×1=6)

Answerany 7 questions (Wt. 2 each).

- 11. What are the characteristics of the dual problem ?
- 12. Find the initial feasible solution to the TP given below by north west corner rule.

Destination								
Origin	D ₁	D ₂	D ₃	Supply				
01	2	7	4	5				
02	3	З	1	8				
0 ₂ 0 ₃	5	4	7	7.				
04	1	6	2	14				
Demand	7	9	18					

13. Give the mathematical formulation of assignment problem.

14. What are optimistic, pessimistic and normal time estimates in PERT calculations?

15. Use Branch and Bound technique, solve the following :

 $Max: Z = 2x_1 + 2x_2$

S.t.
$$5x_1 + 3x_2 \le 8$$

 $x_1 + 2x_2 \le 4$

 $x_1, x_2 \ge 0$ and integers

(Use graphic method to solve the LPP).

- 16. Use Bellman's principle of optimality to find the optimum solution : Maximize $Z = x_1.x_2.x_3$
 - S.t. $x_1 + x_2 + x_3 = 5$

 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

 A company has 3 jobs on hand. Each of these must be processed through two departments, the sequential order for which Department A – Press Shop, Department B – Finishing :

	Jobl	Job II	Job III	
Department A	8	6	5	
Department B	8	3	4	

Find the sequence in which 3 jobs should be processed so as to take minimum time to finish all the 3 jobs. What are minimum i) Total time ii) Idle time of both departments?

0.

18. Solve graphically the following linear programming problem :

19. Solve using simplex method : Maximise $Z = 5x_1 + 3x_2$

- S.t. $x_1 + x_2 \le 2$ $5x_1 + 2x_2 \le 10$ $3x_1 + 8x_2 \le 12, x_1, x_2 \ge 0.$
- 20. Find the dual of the following primal :

Min.
$$Z = 4x_1 + 2x_2 + x_3$$

S.t. $x_1 + x_2 \le 10$
 $3x_1 + x_2 + x_3 \ge 23$
 $7x_1 - x_3 = 6$
 $x_1, x_2, x_3 \ge 0.$

21. Solve using Big-M method :

Min.
$$Z = 5x_1 + 6x_2$$

S.t. $2x_1 + 5x_2 \ge 1500$ $3x_1 + x_2 \ge 1200$ $x_1 \ge 0, x_2 \ge 0.$

K16U 0517

Answer any 2 questions (Wt. 4 each) :

- 22. Solve by two phase simplex method :
 - Min. $Z = 6x_1 + 5x_2$
 - S.t. $2x_1 + x_2 \ge 80$
 - $x_1 + 2x_2 \ge 60$; $x_1, x_2 \ge 0$.
- 23. Solve the following TP whose cost matrix availability at each plant and requirements at each warehouse are given below as follows :

	. 1	Warehouse			
Plant	W ₁	W2	W ₃	W ₄	Availability
P ₁	190	300	500	100	70
P ₂	700	300	400	600	90
P ₃	400	100	600	200	180
Requireme	ents 50	80	70	140	

24. The following table gives activities in a construction project and other relevant information :

Activity: 1-2 1-3 2-3 2-4 3-4 4-5 Duration: 20 25 10 12 6 10

- i) Draw the network for the project.
- ii) Find free, total and independent floats for each activity.
- iii) Which are the critical activities ?

(Wt. 2×4=8)