

K17U 0640

Reg. No. :

Name :

IV Semester B.C.A. Degree (CBCSS – Reg./Supple./Imp.) Examination, May 2017 (2014 Admn. Onwards) COMPLEMENTARY COURSE IN MATHEMATICS 4C04 MAT – BCA : Mathematics for BCA – IV

Time : 3 Hours

Max. Marks: 40

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each :

- 1. What is the expected number of heads when we flip 3 fair coins ?
- 2. What are the two fundamental conditions on which the simplex method is based ?
- 3. Give the Newton-Raphson iteration formula.
- 4. What is meant by the forward differences of a function ?

(4×1=4)

SECTION-B

Answer **any 7** questions from among the questions **5** to **13**. These questions carry **2** marks **each** :

- 5. A pair of dice is tossed. Let X denote the maximum of the numbers appearing. Find the variance of X.
- 6. Suppose a random variable X has mean μ = 25 and standard deviation σ = 2. Use Chebyshev's inequality to estimate P (X \ge 20).
- A game consists of tossing a fair coin four times. A player wins \$3 if two or more heads appear; otherwise the player loses \$4. Find the expected value of the game.

K17U 0640

8. Rewrite in standard form the following linear programming problem :

Minimize $z = 2x_1 + x_2 + 4x_3$ subject to the constraints :

 $-2x_1 + 4x_2 \leq 4, \, x_1 + 2x_2 + x_3 \geq 5, \, 2x_1 + 3x_3 \leq 2, \, x_1, \, x_2 \geq 0$ and x_3 unrestricted in sign.

- 9. Give the standard form of a linear programming problem and explain its characteristics.
- 10. Obtain an initial basic feasible solution to the following transportation problem using the north-west corner rule:

2	D	E	F	G	Available
А	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Requirement	200	225	275	250	

11. The function y = sin x is tabulated below :

x	0	π/4	π/2	
sin x	0	0.70711	1.0	

Using Lagrange's interpolation formula, find the value of sin ($\pi/6$).

- 12. Given $\frac{dy}{dx} = 1 + xy$, y (0) = 1, find y (0.1) correct to four decimal places, by Taylor series.
- 13. Using Picard's method, find y (0.1), given that $\frac{dy}{dx} = \frac{y x}{y + x}$ and y (0) = 1. (7×2=14)

SECTION - C

Answer **any 4** questions from among the questions **14** to **19**. These questions carry **3** marks **each** :

14. Let X be a random variable with distribution :

x	1	2	3	
P (X = x)	0.3	0.5	0.2	

Find the distribution, mean and standard deviation of the random variable $Y = x^2 + 3x + 4$.

15. Maximize $z = 50x_1 + 60x_2$ subject to the constraints :

 $2x_1 + 3x_2 \le 1500, 3x_1 + 2x_2 \le 1500, 0 \le x_1 \le 400, 0 \le x_2 \le 400.$

- 16. Using Newton's forward difference formula, find the sum $S_n = 1^3 + 2^3 + 3^3 + ... + n^3$.
- 17. Use the method of false position to find a real root, correct to three decimal places of the equation, $x^3 + x^2 + x + 7 = 0$.
- 18. Evaluate $I = \int_{0}^{1} \frac{1}{1+x} dx$ correct to three decimal places using both the trapezoidal and Simpson's rules with h = 0.125.
- 19. Given $y' = x y^2$; y(0) = 1, use Taylor's series method to determine y(0.1), correct to four decimal places. (4×3=12)

-3-

K17U 0640

SECTION-D

Answer **any 2** questions from among the questions **20** to **23**. These questions carry **5** marks **each** :

20. Let X be a random variable with the following distribution and let $Y = X^2$:

x	-2	-1	1	2
P(X= x)	$\frac{1}{4}$	1 4	$\frac{1}{4}$	$\frac{1}{4}$

a) Find the distribution of Y.

b) Find the joint distribution of X and Y.

c) Determine whether X and Y are independent.

d) Find Cov (X, Y) and $\rho(X, Y)$.

21. Use simplex method to solve the following L.P.P. :

Maximize $z = 4x_1 + 10x_2$ subject to the constraints :

 $2x_1 + x_2 \le 50, 2x_1 + 5x_2 \le 100, 2x_1 + 3x_2 \le 90; x_1 \ge 0, x_2 \ge 0.$

22. From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2 :

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

23. Solve the initial value problem defined by $\frac{dy}{dx} = \frac{3x + y}{x + 2y}$, y (1) = 1 and find y (1.2) and y (1.4) by the Runge-Kutta fourth order formula. (2×5=10)