

K18U 1004

Reg. No. :

Name :

IV Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.) Examination, May 2018 (2014 Admn. Onwards) COMPLEMENTARY COURSE IN MATHEMATICS 4C04MAT-BCA : Mathematics for BCA – IV

Time : 3 Hours

Max. Marks: 40

Instruction : Non-programmable scientific calculator may be used.

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. What is linear programming ?

2. Define Random variable.

3. What is meant by extrapolation ?

4. Give Newton's backward interpolation formulae.

$(4 \times 1 = 4)$

SECTION - B

Answer **any 7** questions from among the questions **5** to **13**. These questions carry **2** marks **each**.

5. Find the sample space S if a coin is tossed twice.

6. What do you understand by expectation of a random variable which is discrete ?

7. Write the steps in formulation of a linear programming problem.

 $(7 \times 2 = 14)$

- K18U 1004
 - Find the feasible solution of the following transportation problem using North-West Corner method.

Warehouse	S
-----------	---

		W ₁	W_2	W_{3}	W4	Supply
	F,	14	25	45	5	6
Factories	F ₂	65	25	35	55	8
	F ₃	35	3	65	15	16
Requirement		4	7	6	13	30 (Total)

- 9. By using Lagrange's interpolation formula find x if $y_1 = 4$, $y_3 = 12$, $y_4 = 19$ and $y_x = 7$.
- 10. State the Trapezoidal rule.
- 11. Give the integral equation in Picard's method of successive approximation.
- 12. Solve the equation $y' = x + y^2$ subject to the condition y = 1 when x = 0.
- 13. State intermediate value theorem.

SECTION - C

Answer **any 4** questions from among the questions **14** to **19**. **Each** question carries **3** marks.

- 14. Suppose that a game is to be played with a single die assumed fair. In this game a player wins Rs. 20 if a 2 turns up, Rs. 40 if a 4 turns up loses Rs. 30 if a 6 turns up while the player neither wins nor loses if any other face turns up. Find the expected sum of money to be won.
- 15. Find the expected value of x if the density function of a random variable x given

by $f(x) = \begin{cases} \frac{1}{2}x, & 0 < x < 2\\ 0, & \text{otherwise} \end{cases}$

16. A manufacturing company is engaged in producing three types of products A, B and C. The production department produces each day components sufficient to make 50 units of A, 25 units of B and 30 units of C. The management is confronted with the problem of optimizing the daily production of the products

in the assembly department, where only 100 man-hours are available daily for assembling the products. The following additional information is available.

Type of Product	Profit Contribution/Unit	Assembly time/product
A	12	0.8
В	20	1.7
C	45	2.5

The company has a daily order commitment for 20 units of product A and a total of 15 units of products B and C. Formulate this problem as an LP model so as to maximize the total profit.

17. Solve by Vogel's Approximation method, the transportation problem.

			 Contract (Contract)
1 10	acti	nat	one
	201	I I a L	ions

Sources

	1	2	3	4	Availability
1	21	16	25	13] 11
2	17	18	14	23	13
3	32	27	18	41	19
	6	10	12	15	43

Requirement

- 18. Find a real root of the equation $f(x) = x^3 x 1 = 0$.
- 19. Certain corresponding values of x and log₁₀x are (300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871), find log, 301. $(4 \times 3 = 12)$

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

20. Define Variance. Find the variance and standard deviation of the random variable

X given by $f(x) = \begin{cases} \frac{1}{2}x, & 0 < x < 2 \end{cases}$ 0, otherwise

21. Use the graphical method to solve the following LP problem. Maximize $Z = 2x_1 + x_2$

S.t. to the constraints

$$\begin{array}{ll} x_1 + 2x_2 \leq 10, & x_1 - x_2 \leq 2\\ x_1 + x_2 \leq 6, & x_1 - 2x_2 \leq 1\\ x_1, x_2 \geq 0 \end{array}$$

K18U 1004

22. Find the cubic polynomial which takes the following values y(1) = 24, y(3) = 120, y(5) = 336 and y(7) = 720. Hence obtain the value of y(8).

23. From the following table of values of x and y obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2.

У
2.7183
3.3201
4.0552
4.9530
6.0496
7.3891
9.0250

(2×5=10)