K16U 1807

Reg. No. :

Name :

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.A.R.T.M./B.B.M./ B.T.T.M./B.C.A./B.S.W./B.A. Afsal UI Ulama Degree (CBCSS – 2014 Admn.-Regular) Examination, November 2016 Open Course 5D04 MAT : LINEAR PROGRAMMING

Time : 2 Hours

Max. Marks : 20

SECTION - A

Answer all the questions. Each question carries one mark.

- 1. What do you mean by slack variables in L.P.P. ?
- Give a necessary and sufficient condition for the existence of a feasible solution to the general transportation problem.
- 3. Define the term loop associated with a transportation table.
- 4. When do you say that a transportation problem is balanced?

 $(1 \times 4 = 4)$

SECTION-B

Answer any 6 questions. Each question carries two marks.

- 5. What is the canonical form of L.P.P. ? What are its characteristics ?
- Reduce the following L.P.P. to its standard form : Determine x₁≥0, x₂≥0, x₃≥0 so as to maximize z = 2x₁ + x₂ + 4x₃ subject to the constraints : -2x₁ + 4x₂ ≤ 4, x₁ + 2x₂ + x₃≥5, 2x₁ + 3x₃≤2.
- 7. Give the mathematical formulation of the following Diet problem : Given the nutrient contents of a number of different foodstuffs and the daily minimum requirement of each nutrient for a diet, determine the balanced diet which satisfied the minimum daily requirements and at the same time has the minimum cost.
- 8. Obtain the dual of the following L.P.P. :

Maximize f(x) = $2x_1 + 5x_2 + 6x_3$ subject to the constraints : $5x_1 + 6x_2 - x_3 \le 3$, $-2x_1 + x_2 + 4x_3 \le 4$, $x_1 - 5x_2 + 3x_3 \le 1$, $-3x_1 - 3x_2 + 7x_3 \le 6$, $x_1, x_2, x_3 \ge 0$.

K16U 1807

- 9. State the result connecting linear dependence and loops in a transportation problem.
- 10. What is meant by degeneracy in transportation problem ? How do you resolve degeneracy at the initial solution ?
- Obtain an initial basic feasible solution to the following transportation problem using the north-west corner rule.

	D	E	F	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Requirement	200	225	275	250	

 Obtain an initial basic feasible solution to the following transportation problem using the matrix minima method

	D ₁	D ₂	D ₃	D ₄	Capacity
0,	1	2	3	4	6
O ₂	4	3	2	0	8
. O ₃	0	2	2	1	10
Demand	4	6	8	6	

13. Explain the assignment problem and its mathematical formulation.

(6×2=12)

SECTION-C

Answer any 1 question. Each question carries four marks.

- 14. Use simplex method to solve the L.P.P. : Maximize $z = 3x_1 + 2x_2$ subject to the constraints : $x_1 + x_2 \le 6$, $2x_1 + x_2 \le 6$, $x_1 \ge 0$, $x_2 \ge 0$.
- 15. Solve the following transportation problem :

From	То						
	А	В	·C	Available			
1	50	30	220	1			
- 11	90	45	170	3			
111	250	200	50	4			
Requirement	4	2	2				

 $(1 \times 4 = 4)$