

K17U 1829

Reg. No. :

Name :

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.A.R.T.M./ B.B.M./B.T.T.M./B.C.A./B.S.W./B.A. Afsal-UI-Ulama Degree (CBCSS – Reg./Sup./Imp.) Examination, November 2017 (2014 Admission Onwards) OPEN COURSE 5D04 MAT : Linear Programming

Time : 2 Hours

Max. Marks : 20

SECTION - A

Answer all the questions. Each question carries one mark.

- 1. What do you mean by surplus variables in L.P.P.?
- 2. What is the number of basic variables of the general transportation problem at any stage of feasible solution ?
- 3. How do you check from the transportation table that a feasible solution is basic or not ?
- 4. When do you say that a transportation problem is unbalanced ? · (4×1=4)

SECTION-B

Answer any 6 questions. Each question carries two marks.

- 5. What is the standard form of L.P.P. ? What are its characteristics ?
- 6. Define basic solution to a system of equations.
- 7. Obtain the dual of the following L.P.P. Maximize $z = 2x_1 + x_2$ subject to the constraints : $x_1 + 5x_2 \le 10, x_1 + 3x_2 \ge 6, 2x_1 + 2x_2 \le 8; x_2 \ge 0$ and x_1 unrestricted.

K17U 1829

8. Solve graphically the following L.P.P.

Maximize $z = 4x_1 + 3x_2$ subject to the constraints :

 $2x_1 + x_2 \leq \ 1000, \, x_1 + x_2 \leq 800, \, x_1 \leq 400, \, x_2 \leq 700, \, x_1 \geq 0, \, x_2 \geq 0.$

- 9. What is meant by degeneracy in transportation problem ? How do you resolve degeneracy at subsequent iterations ?
- 10. Obtain an initial basic feasible solution to the following transportation problem using the north-west corner rule.

tifes in	D ₁	D ₂	D ₃	D4	Availability
0,	5	3	6	2	19
02	4	7	9	1	37
0 ₃	3	4	7	5	34
Demand	16	18	31	25	

11. Given below is an assignment problem. Write it as a transportation problem.

	A ₁	A ₂	Α,
R ₁	1	2	3
R ₂	4	5	1
R ₃	2	1	4

12. Use Vogel's approximation method to obtain an initial basic feasible solution to the following transportation problem.

21	D	E	F	G	Available
А	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Demand	200	225	275	250	

13. Obtain an initial basic feasible solution to the following transportation problem using the Least-Cost method.

	D ₁	D ₂	D ₃	D4	Capacity
0,	1	2	3	4	6
0,	4	3	2	0	8
0,	0	2	2	1	10
Demand	4	6	8	6	

(6×2=12)

SECTION-C

Answer any 1 question. It carries four marks.

- 14. Use simplex method to solve the L.P.P. Maximize $z = 3x_1 + 2x_2$ subject to the constraints : $x_1 + x_2 \le 4$, $x_1 - x_2 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$.
- 15. Solve the following transformation problem.

То					
From	А	в	С	Available	
1	6	8	4	14	
II	4	9	8	12	
III	1	2	6	5	
Demand	6	10	15		

 $(1 \times 4 = 4)$

-3-