K18U 1615

Reg. No. :

Name :

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.A.R.T.M./B.B.M./ B.T.T.M./B.C.A./B.S.W./B.A. Afsal UI Ulama Degree (CBCSS – Reg./Sup./Imp.) Examination, November 2018 (2014 Admn. Onwards) Open Course 5D04MAT : LINEAR PROGRAMMING

Time : 2 Hours

Max. Marks : 20

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

 $(1 \times 4 = 4)$

- 1. Define slack variable and surplus variable.
- 2. How many basic feasible solutions are there to a system of 3 simultaneous linear equations in 4 unknowns ?
- 3. What is an unbalanced transportation problem ?
- 4. What do you mean by degeneracy in transportation problem ?

SECTION -- B

Answer any 6 questions from among the questions 5 to 13. These questions carry 2 marks each. (2×6=12)

- 5. Explain the standard form of an L.P.P.
- 6. Find any three basic solutions of the equations $2x_1 + 6x_2 + 2x_3 + x_4 = 3: 6x_1 + 4x_2 + 4x_3 + 6x_4 = 2.$
- 7. Solve the following L.P.P. graphically Minimize $z = 4x_1 + 2x_2$ subject to the constraints $x_1 + 2x_2 \ge 2$, $3x_1 + x_2 \ge 3$, $4x_1 + 3x_2 \ge 6$, $x_1 \ge 0$, $x_2 \ge 0$.
- 8. Formulate dual of the following L.P.P. Maximize $z = 2x_1 + x_2$ subject to the constraints $x_1 + 2x_2 \le 10, x_1 + x_2 \le 6, x_1 - x_2 \le 2, x_1 - 2x_2 \le 1, x_1 \ge 0, x_2 \ge 0.$

P.T.O.

K18U 1615

- 9. Give a mathematical formulation of the transportation problem.
- 10. Explain loops in transportation tables.
- 11. Find an initial basic feasible solution to the following transportation problem using Vogel's approximation method.

Market		M1	M2	M3	M4	Supply
	01	1	2	1	4	30
Origin	02	3	3	2	1	50
	03	4	2	5	9	20
Demand		20	40	30	10	

- 12. Explain difference between transportation problem and an assignment problem.
- 13. Solve the following minimal assignment problem.

	M1	M2	M3	M4	M5	
P1	8	5	2	6	1	
P2	0	9	5	5	4	
P3	3	8	9	2	6	
P4	4	з	1	0	3	
P5	9	5	8	9	5	

SECTION - C

Answer any 1 question from among the following questions. These questions carry 4 marks each. (4×1=4)

14. Solve using simplex method.

Maximize $z = x_1 + x_2$ subject to the constraints $2x_1 + x_2 \le 4$, $x_1 + 2x_2 \le 3$, $x_1 \ge 0$, $x_2 \ge 0$.

15. A basic feasible solution the following transportation problem is given as $x_{11} = 1$, $x_{12} = 10$, $x_{13} = 3$, $x_{23} = 12$ and $x_{31} = 5$. Is it an optimal solution, if not find an optimal solution?

Destination \rightarrow	1	D1	D2	D3	Supply
	01	6	8	4	14
Origin	02	4	9	3	12
eng	03	1	2	6	5
Demand		6	10	15	