

II Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ Degree (CCSS – Reg./Supple./Improv.) Examination, April 2012 COMPLEMENTARY COURSE IN COMMERCE 2C02 COM : Quantitative Techniques for Business Decisions

Time: 3 Hours

2

Reg. No. :

Name :

Max. Weightage: 30

Instruction : Use of simple calculator and statistical table is permitted.

PART-A

This Part consists of two bunches of questions carrying **equal** weightage of **one**. **Each** bunch consists of four objective type questions. Answer **all**.

- Total number of arrangements possible of 'n' different objects taking 'r' at a time giving importance to the order is
 - a) ${}^{n}p_{r}$ b) ${}^{n}c_{r}$ c) ${}^{n}c_{n}$ d) ${}^{n}p_{n}$
 - 2) A and B are two events. If $A \cap B$ is a null set, it means A and B are
 - a) Not mutually exclusive
 - b) Mutually exclusive
 - c) None of the above
 - 3) Simplex method can be used to solve LPP, only if there are
 - a) two variables
 - b) Two or more
 - c) None of the above
 - 4) Chi square distribution is
 - a) discrete frequency distribution
 - b) normal distribution
 - c) Continuous distribution

(Weight = 1)

M 928

1

-2-

T I I (0			
The value of e	³ is equal to			
a) 0.74042		b) 0.27253		
c) 0.04979	adt horsen canto	d) 0.00409		
For a binomial	distribution, n = 10 p	$p = \frac{1}{2}, q = \frac{1}{2}$. The st	tandard deviati	ion is
a) √40	b) √20	c) √5	d) √2.5	
Regression coe r is equal to	efficient by $x = 0.8 a$	nd bxy = 0.45 . The	n, correlation c	oefficient
a) $\sqrt{0.53}$	b) $\sqrt{0.39}$	c) √0.25	d) √0.36	
If $P(A \cup B) = 0$	$\Theta, \ P(\overline{A} \cap \overline{B}) \ \text{will be}$	equal to		
a) 0.1	b) 0.3	c) 0.2	d) 0.4	(Weight = 1)
	PA	ART-B		
	a) 0.74042 c) 0.04979 For a binomial of a) $\sqrt{40}$ Regression coefficients r is equal to a) $\sqrt{0.53}$ If P(A \cup B) = 0.9	c) 0.04979 For a binomial distribution, n = 10 p a) $\sqrt{40}$ b) $\sqrt{20}$ Regression coefficient by x = 0.8 a r is equal to a) $\sqrt{0.53}$ b) $\sqrt{0.39}$ If P(A \cup B)= 0.9, P(A \cap B) will be a) 0.1 b) 0.3	a) 0.74042 b) 0.27253 c) 0.04979 d) 0.00409 For a binomial distribution, $n = 10 p = \frac{1}{2}$, $q = \frac{1}{2}$. The st a) $\sqrt{40}$ b) $\sqrt{20}$ c) $\sqrt{5}$ Regression coefficient by $x = 0.8$ and $bxy = 0.45$. The r is equal to a) $\sqrt{0.53}$ b) $\sqrt{0.39}$ c) $\sqrt{0.25}$ If $P(A \cup B) = 0.9$, $P(\overline{A} \cap \overline{B})$ will be equal to	a) 0.74042 b) 0.27253 c) 0.04979 d) 0.00409 For a binomial distribution, $n = 10 p = \frac{1}{2}$, $q = \frac{1}{2}$. The standard deviation a) $\sqrt{40}$ b) $\sqrt{20}$ c) $\sqrt{5}$ d) $\sqrt{2.5}$ Regression coefficient by $x = 0.8$ and $bxy = 0.45$. Then, correlation of r is equal to a) $\sqrt{0.53}$ b) $\sqrt{0.39}$ c) $\sqrt{0.25}$ d) $\sqrt{0.36}$ If $P(A \cup B) = 0.9$, $P(\overline{A} \cap \overline{B})$ will be equal to a) 0.1 b) 0.3 c) 0.2 d) 0.4

Answer any eight questions in one or two sentences each. Each question carries a weightage of one.

9) What is regression equation of X on Y?

10) Give the axioms in probability theory.

11) What is the area property of normal curve ?

12) What is another word for Z value ?

13) Give the formula for computing mean of a binomial distribution.

14) What are non-negative constraints in LPP?

15) State two methods of analysing correlation.

16) Give two popular methods of fitting trend in time series.

17) What is a vector in simplex method ?

18) State two assumptions of 't' distribution.

(W=8×1=8)

PART-C

Answer any six questions. Answer not to exceed one page each. Each question carries a weightage of two.

- 19) State any four limitations of L.P.P.
- 20) List any four phases of operations Research.
- 21) Give any four properties of Poisson distribution.
- 22) Distinguish between correlation and Regression.
- 23) In a competitive exam, out of 600 candidates who appeared, 30 are to be selected 100 candidates will be called for interview. What is the probability that a person will be called for an interview ? Determine the probability that a person will get selected, if he is called for an interview.
- 24) There is 5% chance for an item produced by a machine to be defective. Calculate the probability that out of ten items selected at random,
 - a) exactly one will be defective
 - b) two will be defective
 - c) less than 2 defectives are found

use binomial probability rule.

- 25) The regression equation of y on x is 2x + 4y 5 = 0. Calculate the value of by x. Also calculate bxy if regression equation of x on y is 3x + 2y + 4 = 0.
- 26) A project yields an average cash flow of Rs. 500 lakhs with standard deviation Rs. 60 lakhs. Calculate the probability that
 - a) Cash flow will be more than 680 lakhs
 - b) Cash flow will be between 460 and 540 lakhs.

 $(W=6\times2=12)$

PART-D

-4-

Answer any two. Each question carries a weightage of four.

- 27) Explain the apriori and relative frequency approaches to probability.
- 28) The probability that a doctor will diagnose a particular disease correctly is 0.6. The probability that the patient will die by his treatment, after correct diagnosis is 0.4. The probability of death after wrong diagnosis is 0.7. A patient who had the disease died. What is the probability that the disease was not correctly diagnosed?
- 29) Solve graphically. Objective function :

Minimize $Z = 1000 x_1 + 800 x_2$

Subjected to constraints

 $6x_1 + 2x_2 \ge 12 \dots (1)$

 $2x_1 + 2x_2 \ge 8$ (2)

 $4x_1 + 12x_2 \ge 24 \dots$ (3)

 $x_1, x_2 \ge 0$

(Weight = $2 \times 4 = 8$)