

K16U 2138

Reg. No.:	
Name:	

III Semester B.Com. Degree (CBCSS – Reg./Supple./Imp.) Examination, November 2016 (2014 Admn. Onwards) General Course 3A12 COM : NUMERICAL SKILLS FOR BUSINESS

Time : 3 Hours			Max. Marks : 40		
	PAF	T-A			
Answer all questions	Each carries ½ mar	k.			
1. The average of fir	st 10 even numbers i	S			
a) 12	b) 15	c) 11	d) 10		
2. If 4:5::12:x, then >	k is				
a) 15	b) 18	c) 20	d) 22		
3. If $5^{x+5} = 1$, then x	is				
a) -5	b) $\frac{-4}{5}$	c) 0	d) 1		
4. If A is a set with r	n(A) = m, then the nur	nber of powerset is			
a) m ⁿ	b) 2 ^m	c) 2	d) 4m ²	(4×½=2)	
	PAF	RT-B			
Answer four questic	ons. Each carries one	mark.			
5. If one root of x^2 –	6kx + 5 = 0 is 5, the	n the value of k is			
6. If A be a set, ther	1			5	

- ii) A∩A is _____

 $(4 \times 1 = 4)$

- 7. If 15% of A = 20% of B, then A:B is
- 8. If $A = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ then A:B is
- 9. If $0.6 \times A = 0.09 \times B$, then A:B is
- 10. The shaded portion in the given Venn diagram represents

PART-C

Answer any six questions (not exceeding one page). Each carries three marks.

- 11. The difference between the simple interest and the compound interest on Rs. 5,000 at 10% per annum for 3 years is
- 12. Solve $8x + 3y \le 100$, $x \ge 0$, $y \ge 0$ graphically.
- 13. If $x = 7 4\sqrt{3}$, then $\sqrt{x} + \frac{1}{\sqrt{x}}$ is

14. If $A = \{1, 3\}, B = \{1, 5, 9\}, C = \{1, 3, 5, 7, 9\}$ then

- i) o _____B
- ii) A_____B
- iii) A _____ C
- iv) B____C
- v) A∩B=_____
- vi) A \cup B = _____

15. If the angles of a triangle are in the ratio 3:4:5, then find all the angles of a triangle.

16. Find the rank of A =
$$\begin{vmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{vmatrix}$$
.

17. If $A + B = \begin{bmatrix} -2 & 6 \\ 6 & 2 \end{bmatrix}$ and $A - B = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$ find A and B.

The compound interest on a sum at 12% per annum for 2 years is Rs. 1590.
What will be the simple interest on this sum ? (6×3=18)

PART-D

Answer any two questions. Each carries eight marks.

19. If $A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix} B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ then compute

A + B and B - C. Also verify that A + (B - C) = (A + B) - C.

20. Solve the following equations

$$x + 2y + 5z = 10$$

 $x - y - z = -2$
 $2x + 3y - z = -11$

21. If $A = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 5 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & -4 & 1 \\ -2 & 5 & -3 \\ 3 & 6 & 3 \end{bmatrix}$ verify that (AB) C = A(BC).

 $(2 \times 8 = 16)$