	M 4506
Reg. No. : 9-1849	
Name:	
V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./ B.A. Afsal-UI-Ulama Degree (CCSS-Reg./Supple./li Examination, November 2013 (Open Course) 5D01 MAT : BUSINESS MATHEMATICS	
Time: 2 Hours Ma	ax. Weightage : 20
Instruction : Answer all questions.	
PART – A	
This Part consist of two bunches of question carrying equal weightage bunch consists of four objective type of questions. Answer all questions	
 The function y = x is called the function. 	
2) $\lim_{x \to a} \frac{x^n - a^n}{x - a} = $	
3) If u and v are any functions of x, then $\frac{d}{dx}(u/v) = $	
4) For points of local maximum $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2}$. (W – 1)
II. 5) $\int \frac{du}{dx} = $	
6) $\int \log x dx =$	
7)	
8) If P is the principal amount, and if the compounding done in times	in a year and

the rate of interest is r % p.a. then interest for n years = _____

-(W-1)

PART-B

Answer any six questions in one or two sentences each. Each question carries a weightage of one.

- 9) Evaluate the limit $\lim_{x \to \frac{1}{3}} \frac{9x^2 1}{3x 1}$
- 10) Prove that the function $f(x) = \frac{|x|}{x}$ is discontinuous at x = 0.
- 11) Differentiate with respect to x, $5x^4 + 3x^3 7x^2 + 9x 100$.
- 12) Find $\frac{dy}{dx}$ if $y = x^n e^{ax}$.
- 13) Evaluate $\int \frac{x^4 + 3x^2 + 1}{x^3} dx$.
- 14) Find $\int \frac{\sqrt{1+\log x}}{x} dx$.
- 15) If the demand function is $p = 16 x^2$ find consumer surplus at x = 3.
- 16) The supply function of a product is $y = 3x^2 + 6$. Find the producer's supply when 10 units are supplied.
- 17) Calculate the nominal rate of interest convertible half yearly when the effective rate is 6% p.a.
- 18) Calculate the market equilibrium value for an acre of land yielding Rs.100 p.a. after all expenses, indefinitely into the future. The market rate of interest is 10% p.a. (W 6×1=6)

PART-C

Answer any four questions. Each carries a Wt 2.

- 19) Evaluate $\lim_{x\to 0} \frac{a^x b^x}{x}$.
- · 20) A function f(x) is defined as follows

$$f(x) = \begin{cases} \frac{9x}{x+2} & \text{if } x < 1 \\ 3 & \text{if } x = 1 \\ \frac{x+3}{x} & \text{if } x > 1 \end{cases}$$
Examine the continuity in the interval (-3, 3).

21) If
$$y = x^{e^{-x^2}}$$
 find $\frac{dy}{dx}$.

22) If
$$y = x^3 \log (\frac{1}{x})$$
 prove that $x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 3x^2 = 0$.

23) A firm has revenue function given by R = 8D where R is the gross revenue and D is quantity sold and production cost function is given by

$$C = 1,50,000 + 60 \left(\frac{D}{900}\right)^2$$
.

Find the total profit function and the number of units to be sold to get the maximum profit.

- 24) If $f'(x) = 3x^2 + 2$ and f(0) = 0, find f(2).
- 25) Find the total revenue between 0 to 10 units of output (x) from the marginal revenue given by MR = $3 \left(\frac{x^2}{20} \right) 10x + 100$.
- 26) Calculate the present value of an annuity of Rs. 30,000 per annum assumed to be payable continuously for 10 years at the rate of interest 8% p.a. compounded continuously. (W 4×2=8)

PART-D

Answer any one. Wt 4:

- Determine consumer surplus and producer surplus under pure competition for the demand function $p = 36 x^2$ and supply function $p = 6 + \frac{x^2}{4}$ where p is price and x is quantity.
- 28) A company has a demand curve given by the function 2Q + 3P = 160. The average cost curve of the form is given by the relation $AC = 3Q^2 18Q + 63 + \frac{5}{Q}$. Find the level of output which
 - i) Maximize total revenue
 - ii) minimizes marginal cost

29) If
$$y = \left[x + \sqrt{1 + x^2}\right]^m$$
 show that $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} - m^2y = 0$. (W - 1x4=4)