

K16U 2516

Reg. No.:	
Nama	

I Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.) Examination, November 2016 COMPLEMENTARY COURSE IN STATISTICS FOR MATHS/ COMP. SCI./ELE. CORE 1C01 STA : Basic Statistics (2014 Admn. Onwards)

Time: 3 Hours

Total Marks: 40

Instruction : Use of Calculators and Statistical tables are permitted.

PART-A

Short answer. Answer all the 6 questions.

- 1. Define population and sample.
- 2. Distinguish between probability and non probability samples.
- 3. Define percentiles.
- 4. Distinguish between absolute and relative measures of dispersion.
- 5. Define skewness and kurtosis.
- 6. Define multiple correlation.

PART-B

Short essay.

Answer any 6 questions.

- 7. Explain the various methods of collecting primary data.
- 8. State the mathematical properties of arithmetic mean.
- Find the geometric mean for the following data : 70, 15, 75, 500, 8, 45, 250, 40, 36

 $(6 \times 1 = 6)$

K16U 2516

-2-

- 10. Explain various measures of dispersion.
- 11. Prove that the value of the correlation coefficient lies between-1 and 1.
- 12. Why there are two regression lines ?
- 13. Explain components of time series.
- 14. Prove that Fishers index number satisfies factor reversal test.

(6×2=12)

PART-C

Essay.

Answerany 4 questions.

- 15. Explain simple and stratified random sampling.
- The mean and standard deviation of a set of 200 observations were worked out as 60 and 20 respectively. At the time of calculation two items were wrongly taken as 3 and 67 instead of 13 and 17. Find the correct mean and standard deviation.
- 17. Show that independence implies non correlation but not conversely.
- 18. Derive the expression for the rank correlation coefficient.
- 19. In a trivariate population $r_{12} = 0.4$, $r_{13} = 0.5$, $r_{23} = 0.6$. Find $r_{1,23}$ and $r_{12,3}$.
- Explain the least square method for estimating the linear trend in a time series data. (4×3=12)

Long Essay.

Answer any 2 questions.

21. Calculate the value of β_1 and β_2 for the following data.

Class	70 - 90	90 - 110	110 - 130	130 – 150	150 - 170
Frequency	8	11	18	9	4

- 22. The equation of two regression lines are 3x + 12y 10 = 0 and 3y + 9x 46 = 0. Obtain the mean values of X and Y and correlation coefficient.
- 23. Calculate the value of the Pearsons coefficient of correlation for the following data.

х	65	63	67	64	68	62	70	66	68	67
Y	68	66	68	65	69	66	68	65	71	67

24. Calculate the Fishers index number for the following data.

Commodity		2000	2010		
	Price	Quantity	Price	Quantity	
А	16	40	30	40	
В	20	60	26	50	
С	8	100	16	120	
D	4	80	6	100	
Е	12	50	10	60	

(2×5=10)