

K16U 2499

Reg. No. :

Name :

I Semester B.Sc. Degree (C.C.S.S. – Reg./Supple./Improv.) Examination, November 2016 CORE COURSE IN MATHEMATICS 1B01 MAT : Differential Calculus (2014 Admn. Onwards)

Time : 3 Hours

Total Marks : 48

 $(4 \times 1 = 4)$

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each.

1. State Sandwich Theorem.

2. The derivative of sin⁻¹(x²) is _____

3. True or false : If f'(a) = 0 and f''(a) is negative then f(x) is maximum at x = a.

4. Find $\lim_{(x,y)\to(3,4)} \sqrt{x^2 + y^2 - 1}$.

SECTION-B

Answer any 8 questions from among the questions 5 to 14. They carry 2 marks each.

5. Find $\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$.

6. Find the inverse of $y = \frac{1}{2}x + 1$, expressed as a function of x.

7. If $y = e^{ax} \sinh x$, prove that $y_2 - 2ay_1 + (a^2 + b^2)y = 0$.

8. Replace the polar equation $r^2 = 4r\cos\theta$ by equivalent Cartesian equation and identify the graph.

K16U 2499

-2-

9. Graph the set of points whose polar coordinates satisfy the inequalities $0 \le r \le 1$ and $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$.

10. In the Mean Value Theorem f(b) - f(a) = (b - a) f'(c). Determine 'c' lying between

a and b if f(x) = x(x - 1) (x - 2), a = 0 and $b = \frac{1}{2}$.

11. Find
$$\frac{ds}{dx}$$
 if $y = c \cosh(x/c)$.

12. Find $\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}}$.

- 13. Find the domain and range of the function $w = \frac{1}{xy}$.
- 14. Find $\frac{\partial f}{\partial y}$ if $f(x, y) = y \sin xy$.

$(8 \times 2 = 16)$

SECTION-C

Answer any 4 questions from 15 to 20. They carry 4 marks each.

15. If
$$ax^2 + 2hxy + by^2 = 1$$
, find $\frac{d^2y}{dx^2}$.

- 16. Show that $f(x) = \frac{x^2 + x 6}{x^2 4}$ has a continuous extension to x = 2 and find that extension.
- 17. Find ' ρ ' at the origin for the curve $y^4 + x^3 + a(x^2 + y^2) a^2y = 0$.
- 18. Expand e^{sinx} by Maclaurin's series.
- 19. If $u = \frac{x^2 y^2}{x^2 + y^2}$, show that $\frac{x \partial^2 u}{\partial x \partial y} + \frac{y \partial^2 u}{\partial y^2} = \frac{\partial u}{\partial y}$.

20. Find a linearization of $f(x, y) = x^2 - xy + \frac{1}{2}y^2 + 3$ at the point (3, 2). (4×4=16)

K16U 2499

SECTION - D

-3-

Answer any 2 questions from 21 to 24. They carry 6 marks each.

- 21. If $y = e^{a \sin^{-1}x}$, prove that $(1 x^2) y_{n+2} (2n + 1) x y_{n+1} (n^2 + a^2) y_n = 0$. Hence find the value of y_n when x = 0.
- 22. a) Find an equation for the hyperbola with excentricity 3/2 and directrix x = 2.
 - b) Find the directrix of the parabola $r = \frac{25}{10 + 10\cos\theta}$.
 - c) Find the Cartesian coordinate of the point $(-3, 2\pi)$.
- 23. Show that the evolute of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is another equal cycloid.

24. If
$$\sin V = \frac{(x+2y+3z)}{\sqrt{x^8+y^8+z^8}}$$
, show that $x\frac{\partial V}{\partial x} + y\frac{\partial V}{\partial y} + z\frac{\partial V}{\partial z} + 3 \tan V = 0.$ (2×6=12)