0117824

							1		
Re	eg.	N	о.	:	 	 	 	 	
Na	am	e:			 	 		 -	

I Semester B.Sc. Degree CBCSS (OBE)-Regular Examination, November - 2019 (2019 Admission) COMPLEMENTARY ELECTIVE COURSE IN STATISTICS 1C01STA : BASIC STATISTICS

Time: 3 Hours

Max. Marks: 40

(6x1=6)

 $(6 \times 2 = 12)$

K19U 3337

Instruction:

Use of calculators and statistical tables are permitted.

PART-A (Short Answer)

Answer all questions.

- 1. Define a simple random sample.
- 2. The standard deviation of 5 observations is 2.3. If every observation is increased by 2. Then find the resulting standard deviation.
- Define coefficient of variation.
- 4. State principle of least squares.
- 5. Give the normal equation for the curve $y = ae^{bx}$
- 6. Give the expression for rank correlation tor the tied observations.

PART-B

(Short Essay)

Answer any 6 questions.

- 7. Distinguish between SRSWR and SRSWOR.
- What do you mean by systematic sampling? Give its advantages over SRS.
- 9. What do you mean by central tendency? How they can be measured?
- 10. Obtain the GM of 2,4,8,16 and 32
- 11. Differentiate between absolute and relative measure of dispersion
- 12. Define partial correlation.
- 13. Prove that correlation coefficient is lies between 1 and + 1
- 14. Define index numbers. How they can be classified?

P.T.O.

K19U 3337

(2)

PART -C (Essay)

Answer any 4 questions.

(4x3=12)

- **15.** Show that for a discrete distribution $\beta_2 > 1$
- Define raw and central moments. Prove the relation connecting between them.
- **17.** Show that with usual notations, $r = \frac{\sigma_x^2 + \sigma_x^2 \sigma_{x-y}^2}{2\sigma_x\sigma_y}$
- 18. The variables X and Y are connected by the relation a X+bY+c=0. Show that the correlation between them is -1 if the signs of a and b are alike and +1 if they are different.
- **19.** Explain the different components of a time series.
- 20. Calculate the Laspeyer's index number for the following data.

Commodity	1982	1983						
	Price	Quantity	Price	Quantity				
А	5	100	6	150				
B	4	80	5	100				
С	2.5	60	5	72				
D .	12	30	9	33				

PART -D (Long Essay)

Answer any 2 questions (2x5=10)
21. Explain the principle steps in a sample survey.
22. Obtain the moment measure and nature of skewness and kurtosis of the following data.

f: 1 8 28 56 70 56 28 8 1	X:	0	1	2	3	4	5	6	7	8
	f:	1	8	28	56	70	56	28	8	1

23. Show that correlation coefficient is invariant under linear transformations.

24. Explain the method of moving averages for determining the trend.