

K20U 0468

05c0 1 Reg. No. :

Name :

Il Semester B.Sc. Degree (CBCSS (OBE) + Regular) Examination, April 2020 (2019 Admission) Core Course in Mathematics 2B02 MAT : INTEGRAL CALCULUS AND LOGIC

Time: 3 Hours

Max. Marks: 48

PART - A

Short Answer Questions - Answer any 4.

- 1. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^5 x \, dx$.
- 2. Express the equation x + y = 0 in polar form.
- 3. Express the cartesian coordinates (x, y, z) in terms of the spherical coordinates $(\rho, \theta, \phi).$
- 4. Give an example for a sentence which is not a statement.
- 5. Check the truthness/falsity of the statement ($\forall n \in \mathbb{P}$) (n + 2 > 3), where \mathbb{P} is the set of all natural numbers. Justify your answer. $(4 \times 1 = 4)$

PART - B

Short Essay Questions - Answer any 8.

- 6. Find $\frac{d}{dx}(\operatorname{sech}^2(x^3))$.
- 7. Evaluate ∫ e^{-x} sinh 2x dx.
- 8. Evaluate $\int_{0}^{3} \int_{0}^{4} \frac{e^{xy}}{y} dy dx$.
- 9. Evaluate $\int_{-2}^{\frac{\pi}{2}} \int_{-2}^{2\cos\theta} r dr d\theta$.

10. Find the area of a disc of radius a using double integral.

K20U 0468

-2-

- 11. Find $\int_{0}^{4} x^{2} dx$ using trapezoidal rule, taking two subintervals.
- 12. Find $\int_{0}^{4} f(x) dx$ using Simpson's 1/3 rule, where the function f(x) is given by

x	0	1	2	3	4
f(x)	1	2	4	7	9

13. Explain the terms :

- i) Conjunction of two statements
- ii) Contrapositive of an implication.
- 14. If n is an odd integer, prove that $n^2 + 1$ is an even integer.
- 15. Write the converse and contrapositive of the statement : if $x \ge y$, then x y < 0.
- 16. Show that if m and n are natural numbers and m + n = 10, then either $m \le 5$ or $n \le 5$.

(8×2=16)

PART - C

Essay Questions – Answer any 4.

- 17. Evaluate $\int_0^{\overline{4}} \sin^3 4\theta \cos^2 2\theta d\theta$.
- 18. Derive the reduction formula for $\int \tan^n x \, dx$, n > 1.
- 19. Convert into polar form and evaluate $\int_0^3 \int_x^3 \frac{y^2}{x^2 + y^2} dy dx$.
- 20. Evaluate $\int_0^1 \int_0^{2x} \int_{x-z}^{x+z} (x^2 + 2z) dV$.
- 21. Explain the Simpson's 1/3 rule of integration.
- 22. Prove the following statement using the method of contradiction : "If n is an integer and n² is odd, then n must be odd". Is the converse true ? Justify.
- 23. Write the negation of the following statements using quantifiers.
 - i) $(\forall x \in \mathbb{R}) (2x < 7)$
 - ii) $(\exists x \in \mathbb{R}) (2x > 7)$.

 $(4 \times 4 = 16)$

-3-

PART - D

Long Essay Questions - Answer any 2.

- 24. Derive reduction formula for $\int \sin^m x \cos^n x \, dx$, where m, n > 1 and use it to evaluate $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx$.
- 25. Use triple integration in spherical coordinates to find the volume of the solid V bounded above by the sphere $x^2 + y^2 + z^2 = 4$ and bounded below by the cone $z = \sqrt{x^2 + y^2}$.
- 26. Evaluate $\int_0^6 \frac{1}{2x+1} dx$ using Simpson's 1/3 rule, taking six subintervals.
- 27. a) Prove that if x is a real number greater than 1, than $x^2 > x$.
 - b) Test the truthness of the following statements (with justifications) :
 - i) $(\forall x \in \mathbb{R})$ $(x^2 \ge x)$, where \mathbb{R} is the set of all real numbers.
 - ii) $(\forall x \in \mathbb{Z})$ $(x^2 \ge x)$, where \mathbb{Z} is the set of all integers.

 $(2 \times 6 = 12)$