

M 7937

Second Semester B.Sc. Degree Examination, May 2010 MATHEMATICS (Core) Course No. 2 : 2B02 MAT : Foundation of Higher Mathematics

Time: 3 Hours	Maximum Weightage : 30
Fill the blanks :	
1. a) For $ x < 1$, $1 - x + x^2 - x^3 + \dots =$	 Suppose the set P = (1, 2)
b) Sum of the series $2\left[1+\frac{1}{3!}+\frac{1}{5!}+\right] =$	(Weightinger-Die 2-1)-11
c) Coefficient of x^n in the expansion of $2xe^{2x}$ is	
d) n th term of the series $\frac{9}{1!} + \frac{16}{2!} + \frac{27}{3!} + \frac{42}{4!} + \frac{16}{4!} + \frac$	(Weightage 1
demession of the Prove Data as to an emperiement relation-	(high set a law (c) d)
2. a) $f(x) = x^2$, 9 $(x) = x + 3$ then $(g \circ f)(2) =$	follows (a, www.c.d) #
 2. a) f (x) = x², 9 (x) = x + 3 then (g ∘ f) (2) = b) The set [a] = {x ∈ A : x ~ a} where ~ is an equivalence called 	e relation on set A is
 2. a) f (x) = x², 9 (x) = x + 3 then (g o f) (2) = b) The set [a] = {x ∈ A : x ~ a} where ~ is an equivalence called c) A partition of set X = {1, 2, 3, 4} is 	e relation on set A is
 2. a) f (x) = x², 9 (x) = x + 3 then (g o f) (2) = b) The set [a] = {x ∈ A : x ~ a} where ~ is an equivalence called c) A partition of set X = {1, 2, 3, 4} is 	e relation on set A is
 2. a) f (x) = x², 9 (x) = x + 3 then (g ∘ f) (2) = b) The set [a] = {x ∈ A : x ~ a} where ~ is an equivalence called c) A partition of set X = {1, 2, 3, 4} is 	e relation on set A is (Weightage 1
 2. a) f (x) = x², 9 (x) = x + 3 then (g ∘ f) (2) = b) The set [a] = {x ∈ A : x ~ a} where ~ is an equivalence called c) A partition of set X = {1, 2, 3, 4} is d) Domain of f(x) = √25 - x² is 	e relation on set A is (Weightage 1

- 5. Suppose A = {a, b, c} and B = (1, 2}. Then find the number of functions from A to B which are onto.
- 6. $R = \{(1, 2), (1, 3), (3, 1), (3, 3), (2, 3)\}$ is a relation on $A = \{1, 2, 3\}$ find R o R.

7. Sketch the product set $[-3, 2) \times (-2, 2]$ in the plane \mathbb{R}^2 .

8. Let $f: R \to R$ be defined by $f(x) = \frac{2}{3}n + \frac{4}{5}$ find the formula for $f^{-1}(x)$.

10. Suppose the set $P = \{1, 2, 3, ...\}$ of positive integers is ordered by divisibility. Insert the Correct Symbol $\langle \rangle \geq$ or \parallel between each pair of numbers.

a) 2 – 8	b) 18-24
c) $9 - 3$	d) 5 – 15

(Weightage $5 \times 1 = 5$)

Answer any seven from the following : (Weightage 2 each)

- Let A be a set of non-zero integers and let ≈ be a relation on A×A defined as follows (a, b) ≈ (c, d) whenever ad = bc. Prove that ≈ is an equivalence relation.
- 12. Let $A = \{1, 2, 3, 4, 6\}$. Let R be a relation on A defined by x divides y.
 - a) Write R as a set of ordered pairs
 - b) Draw its directed graph
 - c) Find the inverse relation R^{-1} of R
 - d) Can R^{-1} be described in words.
- 13. Sketch the relation $3x^2 + 4y^2 \le 12$. Find the domain of this relation.
- 14. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Then if $g \circ f$ is one-to-one prove that f is one-to-one.
- 15. Define a partial order relation on a set S. When S is linearly ordered. Give an example of a set with a partial order which is not linearly ordered.

16. Define a lattice, sub-lattice and isomorphic lattices.

^{9.} Define partial order on a set S.

- 17. Consider the relation $R = \{(1,1), (1,3), (2,4), (3,1), (3,2)\}$ on $A = \{1, 2, 3, 4\}$ find :
 - a) Reflexive closure of R
 - b) Symmetric closure of R
 - c) Transitive closure of R.
- 18. Solve the equation $x^3 9x^2 + 23x 15 = 0$ whose roots are in arithmetical progression.
- 19. If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$. Find the real value of $\Sigma \alpha^2 \beta$.
- 20. Find the equation whose roots are the roots of the equation $x^4 - 5x^3 + 7x^2 - 17x + 11 = 0$ each diminished by 4. (Weightage 7×2=14)

Answer any three from the following : (Weightage 3 each)

21. Show that
$$\sum_{n=0}^{\infty} \frac{5n+1}{(2n+1)!} = \frac{e}{2} + \frac{2}{e}$$
.

- 22. Sum to infinities the series $\frac{1}{1.2.3} + \frac{1}{5.6.7} + \frac{1}{9.10.11} + \dots$
- 23. Let L be a Lattice. Then prove that :

i) a $\wedge b = a$ if and only if $a \vee b = b$

- ii) The relation $a \le b$ defined by $a \land b=a$ is a partial order relation on L.
- 24. Solve the equation $x^3 21 x 344 = 0$ by Cardan's method.
- 25. If the roots of the equation $x^3 6x^2 + 11x 6 = 0$ be α, β, γ find the equation whose roots are $\alpha^2 + \beta^2, \beta^2 + \gamma^2, \gamma^2 + \alpha^2$. (Weightage 3×3=9)