

M 8869

Reg. No. : Name :

II Semester B.Sc. Degree (CCSS – 2014 Admn. – Regular) Examination, May 2015 CORE COURSE IN MATHEMATICS 2B02 MAT : Integral Calculus

Time: 3 Hours

Max. Marks : 48

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. State the mean value theorem for definite integrals.
- 2. Evaluate : $\int_{0}^{\infty} x^{3}e^{-x} dx$
- 3. Fill in the blanks : The equation $\frac{x^2}{a^2} \frac{y^2}{b^2} + 2z = 0$ represents a surface known as
- 4. Evaluate : $\int_{-1}^{1} \int_{0}^{2} (1-6x^2y) dxdy$. (4×1=

SECTION-B

Answer any 8 questions from among the questions 5 to 14. They carry 2 marks each.

- 5. Show that if f is continuous on [a, b], $a \neq b$ and if $\int_{a}^{b} f(x) dx = 0$ then f(x) = 0 at least
- 6. Define the Riemann sum of a continuous function f defined on the interval [a, b].
- 7. Evaluate : $\int \sinh^2 x dx$.

P.T.O.

 $(4 \times 1 = 4)$

M 8869

- 8. Test for convergence : $\int_{1}^{\infty} \frac{x dx}{3x^4 + 5x^2 + 1}.$
- 9. Prove that Γ (n + 1) = n Γ (n), n > 0.
- 10. Find the area between $y = \sec^2 x$ and $y = \sin x$ from 0 to $\frac{\pi}{4}$.
- 11. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.

12. Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{3/2} - 1, 0 \le x \le 1$.

13. Evaluate $\int_{0}^{1} \int_{0}^{x} (3-x-y) \, dy \, dx$.

14. Find the area enclosed by the lemniscate $\gamma^2 = 4\cos 2\theta$. (8×2=16)

SECTION-C

Answer **any 4** questions from among the questions **15** to **20**. They carry **4** marks **each**. 15. Find $\int x \sin^{-1} x \, dx$.

- 16. Examine for convergence $\int_{0}^{\infty} \frac{1 \cos x}{x^{2}} dx$.
- 17. The line segments x = 1 y; $0 \le y \le 1$ is revolved about the y-axis to generate the cone. Find its lateral surface area.
- 18. The region in the first quadrant enclosed by the parabola $y = x^2$, the y-axis and the line y = 1 is revolved about the line $x = \frac{3}{2}$ to generate a solid. Find the volume of the solid.

19. Find the volume of the region enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.

20. Evaluate
$$\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y} (y-2x)^2 dy dx$$
. (4×4=16)

SECTION - D

Answer **any 2** questions from among the questions **21** to **24**. They carry **6** marks each.

- 21. Find the area of the region between the x-axis and the graph of $f(x) = x^3 x^2 2x; -1 \le x \le 2.$
- 22. Prove that $B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$; m, n > 0.
- 23. Find the area inside the smaller loop of the limacon $\gamma = 2\cos\theta + 1$.
- 24. Find the volume of the upper region D cut from the solid sphere $p \le 1$ by the cone $\phi = \pi/3$. (2×6=12)