SCONTS AND SCIENCE COL	M 769
Reg. No. :	
Name :	
IV Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.I B.A. Afsal UI Ulama Degree (CCSS – Reg./ Examination, April 2012 CORE COURSE IN MATHEMA 4B04 MAT : Calculus	Supple./Improv.)
Time : 3 Hours	Max. Weightage : 30
Fill in the blanks :	
1. a) is an example of a function is not co	ontinuous at 0.
b) The $(n - 1)$ th derivative of sin x is	
c) $\lim_{x \to 0} (x^2 + 3x + 2)$ is	
d) is an example of a function which is differen	ntiable in (-1, 1). (W = 1)
2. a) $\int x^3 dx =$	
(b) $\int x^{-\frac{1}{3}} dx =$	
$c_{x} \int \cos(4x + b) dx =$	
d) $\sum_{k=1}^{n} k^2 =$	(W = 1)
Answer any five from the following :	(Weightage 1 each)

- f(x) = √x + 1, L = 1, x₀ = 0, ε = 0.1. Find an open interval about x₀ on which the inequality | f(x) − L |< ε holds.
- 4. Define infinite limits.

6. Show that $\cos \theta$ is continuous at $\theta = 0$.

7. If y = t(t + 1) (t + 2), find $\frac{dy}{dt}$ using logarithmic differentiation.

8. Evaluate integral $\int_{\log_2}^{\log_3} e^x dx$.

9. Solve the initial value problem $\frac{dy}{dt} = e^t \sin(e^t - 2), y(\log 2) = 0$.

10. Evaluate
$$\lim_{x \to \infty} \frac{\log (x+1)}{\log_2 x}$$
. (5×1=5)

Answer any seven from the following :

(Weightage 2 each)

11. Find the derivative of sin 2x.cos 3x.

12. Evaluate
$$\int \frac{dx}{\sqrt{-x^2+4x-3}}$$

13. Evaluate $\int \frac{\operatorname{Sech} \sqrt{t} \tanh \sqrt{t}}{\sqrt{t}} dt$.

14. Find the n^{th} derivative of $e^{ax}\cos^2x \sin x$.

- 15. If $y = (\sinh^{-1} x)^2$ prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + x^2y_n = 0$.
- 16. Find the absolute maximum and minimum values of $f(x) = x^2$ on [-2, 1].
- 17. State mean value theorem and verify mean value theorem for the function $f(x) = x^2 + 2x 1$ on [0, 1].

18. Replace the polar equation $r \sin \theta = 0$ by equivalent Cartesian equations.

- 19. Find the radius of curvature at (a, 0) on the curve $y^2 = \frac{a^2(a-x)}{x}$.
- 20. Graph the integrand and use area to evaluate the integral $\int |x| dx$. (7×2=14)

Answer any three from the following :

(Weightage 3 each)

- 21. a) At what point or points in the given interval does the function $f(x) = -3x^2 1$ on [0, 1] assume its average value ?
 - b) Express the solution of the initial value problem $\frac{dy}{dx} = \tan x$, y(1) = 5 as an integral.
- 22. Use Simpson's rule with n = 4 to approximate $\int_{-1}^{1} (x^2 + 1) dx$.

23. Prove that :

i)
$$\frac{\beta(m+1, n)}{\beta(m, n)} = \frac{m}{m+n}$$

ii) $\int_{0}^{1} (x \log x)^4 dx = \frac{24}{3125}$

24. i) Find the areas of the region enclosed by the curves $y = \cos(\pi \frac{x}{2})$ and $y = 1 - x^2$.

ii) Find the volume of the solid generated by revolving the regions bounded by the curve $y = 4 - x^2$, and the line y = 2 - x about the x-axis.

25. Graph $y = x^{\frac{5}{3}} - 5x^{\frac{2}{3}}$.

(3×3=9)