

	LIBRARY
Reg. No. :	······································
Name :	VGALIKADAN

K20U 0901

IV Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, April 2020 (2014 Admn. Onwards) COMPLEMENTARY COURSE IN STATISTICS 4C04STA : Statistical Inference

Time: 3 Hours

Max Marks: 40

Instruction : Use of calculators and Statistical tables are permitted.

PART - A

(Short Answer)

Answer all the 6 questions.

1. Distinguish between estimate and estimator.

- 2. Define simple hypothesis.
- 3. What are the uses of t distribution ?
- 4. Show that p.d.f. of exponential distribution with parameter 1/2 and chi square distribution with 2 degrees of freedom are same.
- 5. How will you decide the best critical regions of a Z test ?
- 6. Give an instance where test for proportion is suitable.

 $(6 \times 1 = 6)$

PART - B

(Short Essay)

Answer any 6 questions.

- 7. A manufacturing process is expected to produce goods with a specified weight with variance less than 5 units. A random sample of 10 was found to have variance 6.2 units. Is there reason to suspect that the process variance has increased (use $\alpha = 0.05$).
- 8. Let X1, X2, ..., Xn be a random sample from Bernoulli distribution with parameter p. Obtain a sufficient statistic for p.

K20U 0901

9. Obtain the 95% confidence interval for the mean of a Normal distribution $N(\mu, \sigma)$ when σ is known.

-2-

- 10. Derive the m.g.f. of chi square distribution.
- 11. Mention the important properties of maximum likelihood estimators.
- 12. Give a rough sketch of χ^2 distribution for n = 1, 2.
- 13. For the random sample $X_1, X_2, ..., X_n$ taken from Poisson population with parameter λ . Show that $\frac{n\overline{x}}{n+1}$ is a biased estimator of λ .
- 14. Establish the relation between normal, chi square, t and F distributions. (6×2=12)

PART – C (Essay)

Answer any 4 questions.

- 15. Define Student's t distribution. If X₁ and X₂ are two independent standard normal variables. Prove that $t = \frac{\sqrt{2}X_1}{\sqrt{X_1^2 + X_2^2}}$ follows t distribution with 2 d.f.
- 16. If T is an unbiased estimate of μ , check whether T² is unbiased for μ^2 .
- 17. Describe the paired sample t test.
- 18. If $X_1, X_2, ..., X_n$ is a random sample from a normal population with mean μ and variance σ^2 . Obtain the distribution of sample variance.
- A manufacturing company making automobile tyre claims that the average life of its product is 35000 miles. A random sample of 16 tyres was selected and it was found that the mean life was 34000 miles with a S.D. 2000 miles. Test the hypothesis H₀: μ = 35000 against the alternative H₁: μ < 35000 at α = 5%.
- 20. Let X has p.d.f. $f(x) = (1 + \theta)x^{\theta}$, $0 \le x \le 1$. Find the power of the test which rejects $H_{\theta}: \theta = \frac{1}{2}$ in favour of $H_{1}: \theta = \frac{3}{4}$ if $x > \frac{1}{2}$. (4×3=12)

K20U 0901

PART - D

(Long Essay)

Answer any 2 questions.

- 21. a) Explain the chi-square test for independence of attribute.
 - b) A thousand individuals from a district were classified according to sex and colour blindness to form the following :

	Male	Female	Total
Normal	442	514	956
Colour-blind	38	6	. 44
Total	480	520	1000

Test the hypothesis that colour-blindness is independent of sex (use $\alpha = 0.05$).

- 22. a) Distinguish between point estimation and interval estimation with examples.
 - b) Estimate a 95% confidence interval for μ based on 10 random samples 22, 25, 30, 21, 24, 26, 24, 28, 25, 26 taken from N(μ, 5).
- 23. Let $X_1, X_2, ..., X_n$ is a random sample from a normal population with mean μ and variance σ^2 . Obtain the moment estimators of μ and σ^2 .
- 24. a) Define unbiasdeness and consistency of an estimate.
 - b) Give an example of an estimate which is consistent but not unbiased.

 $(2 \times 5 = 10)$