

M 6328

Reg. No. :

Name :

IV Semester B.Sc. Degree (CCSS – Regular/Supple./Improv.) Examination, May 2014 CORE COURSE IN MATHEMATICS 4B04 MAT : Calculus

Time: 3 Hours

Max. Weightage: 30

Fill in the blanks :

1. a) The function y = | x | is continuous at x = 0 but not _____

b) The function $y = \frac{\sin x}{x}$ has a _____ discontinuity at x = 0.

c) If
$$\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$$
, $\lim_{x \to 0} f(x) = -$

d) The function $y = sin\left(\frac{1}{x}\right)$ has no limit as $x \to$ _____ (W=1×1=1)

2. a)
$$\int_{0}^{2} \frac{6x^{2}}{\sqrt{2x^{3}+9}} dx =$$

- b) State the integral existence theorem.
- c) Evaluate $\int \frac{(z+1)}{\sqrt[3]{3z^2+6z+5}} dz$.
- d) Γ(10) = _____ (W=1×1=1)

P.T.O.

Answer any 5 from the following (Wt. 1 each) :

3. a) Find
$$\lim_{x \to \infty} \left(2 + \frac{\sin x}{x} \right)$$
.

- b) $\lim_{\theta \to 0} \left(\frac{1}{\theta} \frac{1}{\sin \theta} \right).$
- 4. State maximum-minimum theorem for continuous function.
- Find two positive numbers whose sum is 20 and whose product is as large as possible.
- 6. State Mean value theorem.
- 7. Show that equation $x^3 + 3x + 1 = 0$ has exactly one root.
- 8. Find the absolute maximum and minimum values of the function $y = x^3 3x + 2$, $0 \le x \le 2$ on the closed interval [0, 2].
- 9. Replace $(x 2)^2 + y^2 = 4$ by a polar equation.
- 10. Find b for which $f(x) = x^3 + bx^2 + cx + d$ have a point of inflexion at x = 1; where a, b, c, d are constants. (5×1=5)

Write any seven from the following (Wt. 2 each) :

- 11. Find the nth derivative of e^{4x} cos3x.
- 12. State Leibuitz' theorem and use it to prove that if $y = e^{tan^{-1}x}$

$$(1 + x^{2})y_{x+2} + [2(n+1)x - 1]y_{n+1} + x(n+1)y_{n} = 0$$
.

- 13. Find the asymptotes of $y^3 + x^2y + 2xy^2 y + 1 = 0$.
- 14. Find the Maclaurin's series expansion of $y = \log \cos hx$.
- 15. Find the radius of curvature at any 'θ' on the curve x = a(θ sinθ); y = a(1 cosθ).

- 16. Find the evolute of four Cusped hypocycloid $x^{2/3} + y^{2/3} = a^{2/3}$.
- 17. Show that :

i)
$$\int_0^\infty \frac{dx}{1+x^2}$$
 is convergent

- ii) $\int_{1}^{\infty} \frac{dx}{x}$ is divergent.
- 18. Find the area enclosed by the cardioid. $\gamma = a(1 + \cos \theta)$
- One arch of the sine curve y = sinx revolves round the x-axis. Find the volume of solid so generated.
- 20. Find the length of the curve y = log sec x between the points given by x = 0 and $x = \frac{\pi}{3}$. (7x2=14)

Write any 3 from the following (Wt. 3 each) :

21. Find $\frac{dy}{dx}$

- a) $y = \sin^m x \cdot \cos^4 x \cdot \cosh^2 x$.
- b) if $x^y = e^{x-y}$ prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$.
- c) $x = a(\theta + \sin \theta); y = a(1 \cos \theta).$
- d) $y = \tan^{-1}\left(\frac{x}{\sqrt{a^2 x^2}}\right)$.

22. State and prove fundamental theorem of Calculus.

M 6328

- 23. Use Simpson's rule with x = 4 to evaluate $\int_{0}^{5} 5x^4 dx$.
- 24. Use reduction formula to evaluate :
 - a) $\int_{0}^{\frac{\pi}{2}} \sin^5 x \cos^3 x dx$
 - b) $\int x^m (\log x)^n$ when m and n are integers.
- 25. a) Find the area of the region enclosed by the parabola $y^2 = 4ax$ and $x^2 = 4by$.
 - b) Find the volume of the solid obtained by revolving the Cardioid $\gamma = a(1 + \cos \theta)$ about the initial line. (3×3=9)

-4-