

M 8563

IV Semester B.Sc. Degree (CCSS – Reg./Supple./Imp.) Examination, May 2015 CORE COURSE IN MATHEMATICS 4B04 MAT : Calculus

Time : 3 Hours

Max. Weightage : 30

Fill in the blanks :

- 1. a) ______ is an example of a function which is continuous at x = 0 and has no derivative at x = 0.
 - b) $\frac{d}{dx}(1-x^2)^{-\frac{1}{2}} =$ _____

c) If
$$\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$$
, then $\lim_{x \to 0} f(x) = 1$

- d) The function y = sin $\left(\frac{1}{x}\right)$ has no limit as x \rightarrow _____ (Weight : 1)
- 2. a) $\int \frac{2z}{\sqrt[3]{z^2 + 1}} dz =$ _____ b) $\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} dx =$ _____ c) $\left[(n) =$ _____ d) $\int_{0}^{\infty} e^{-x^2} dx =$ _____ (Weight : 1)

Answer any five from the following (Weight 1 each) :

3. Find :

a)
$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$

b)
$$\lim_{\theta \to 0} \left(\frac{1}{\theta} - \frac{1}{\sin \theta} \right).$$

- 4. State the maximum-minimum theorem for continuous functions.
- Find two positive numbers whose sum is 20 and whose product is as large as possible.
- 6. State the Mean-Value Theorem.
- 7. Show that the equation $x^3 + 3x + 1 = 0$ has exactly one root.
- 8. State Rolle's theorem.
- 9. Replace $(x 5)^2 + y^2 = 25$ by a polar equation.
- 10. Find b for which $f(x) = x^3 + bx^2 + cx + d$ has a point of inflexion at x = 1; where a, b, c, d are constants. (5x1=5)

Stern N

Write any seven from the following (Weight 2 each) :

- 11. Find nth derivatives of :
 - a) $\stackrel{x}{e}$ cos 2x

b)
$$\frac{x+1}{x^2-4}$$

12. State Leibnitz's theorem and use it to prove that if $y = e^{a \sin^{-1}x}$,

 $(1 - x^2) y_{n+2} - (2n + 1) xy_{n+1} - (n^2 + a^2) y_n = 0.$

- 13. Prove that the asymptotes of $x^2y^2 = c^2(x^2 + y^2)$ are the sides of a square.
- 14. Using Maclaurin's series, obtain the expansion of e^x sinx up to the term containing x⁵.
- 15. Find the radius of curvature at (x, y) for the curve $a^2y = x^3 a^3$.
- 16. Find the evolute of the parabola $y^2 = 4ax$.
- 17. Evaluate:

a)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}$$

b) $\int_{0}^{1} \frac{dx}{\sqrt{1 - x^2}}$.

- 18. Find the length of the curve $y = \log \sec x$ between the points given by x = 0 and
 - $x=\frac{\pi}{3}$.
- 19. One arc of the sine curve y = sin x revolves round the x-axis. Find the volume of the solid so generated.
- 20. Find the area enclosed by the Cardioid $r = a (1 + \cos \theta)$.

 $(7 \times 2 = 14)$

Write any three from the following (Weight 3 each) :

21. Find $\frac{dy}{dx}$ for the following :

- a) If $x = a (\theta + \sin \theta)$; $y = a (1 \cos \theta)$
- b) If $x^y = y^x$, prove that $\frac{dy}{dx} = \frac{y(y x \log y)}{x(x y \log x)}$.
- c) If $y = (1 + \log x)^{x^{x}}$.
- 22. State and prove the fundamental theorem of Calculus.
- 23. Use Simpson's rule with h = 4 to evaluate $\int 5x^4 dx$.
- 24. Use reduction formula to evaluate :
 - a) $\int x^n e^{ax} dx$
 - b) $\int x^n \sin x \, dx$.
- 25. a) Find the perimeter of the Cardioid $r = a(1 \cos \theta)$.
 - b) Find the volume of the solid obtained by revolving the Cardioid $r = a (1 + \cos \theta)$ about the initial line. (3×3=9)