

K16U 0703

Reg.	No). :	
Name	e :		

IV Semester B.Sc. Degree (CBCSS – 2014 Admn. Regular) Examination, May 2016 COMPLEMENTARY COURSE IN STATISTICS FOR MATHEMATICS/ COMPUTER SCIENCE CORE 4C04STA : Statistical Inference

Time: 3 Hours

Max. Marks: 40

PART – A

(Short answer)

Answer all the 6 questions :

- 1. Define standard error.
- 2. Write the probability density function (p.d.f.) of F distribution.
- 3. What are the desirable properties of a good estimator ?
- 4. Distinguish between simple and composite hypotheses.
- 5. Define power of a test.
- 6. What is a contingency table ?

PART – B (Short essay)

Answer any 6 questions :

- 7. Obtain the mean of a Chi-square random variable with n degrees of freedom.
- Establish the interrelationship between t-statistic and chi-square statistic.
- State Fisher Neymann factorisation criterion and find a sufficient statistic for the parameter λ of a Poisson distribution.

(6×1=6)

P.T.O.

 $(6 \times 2 = 12)$

K16U 0703

- 10. Derive the maximum likelihood estimator of the parameter θ , when a random sample of size n is taken from $f(x, \theta) = \theta e^{-\theta x}$, $0 < x < \infty$, $\theta > 0$.
- 11. Define the terms :
 - i) Type l error
 - ii) Type II error
 - iii) Critical region.
- 12. Obtain an unbiased estimator for $e^{-\lambda}$ where λ is a parameter of a Poisson distribution.
- 13. Explain paired t-test.
- 14. Write the test statistics for testing mean of a Normal population based on a random sample of size n, under the cases the standard deviation is
 - i) Known and ii) Unknown.

PART-C (Essay)

Answer any 4 questions :

 $(4 \times 3 = 12)$

- 15. If $F \sim F(m,n)$, derive the distribution of $\frac{1}{E}$.
- 16. State and prove a sufficient condition for the consistency of an estimator.
- Obtain 95 percent confidence limits for the population mean, when samples are taken from N(μ, σ²), when σ known.
- 18. For testing H_0 : $p = \frac{1}{4}$ against H_1 : p = 3/4, a random sample of 4 observations are taken from Bernoulli (1, p). H_0 is rejected if we get 4 successes. Compute significance level.

19. Construct the test for equality of two population proportions.

20. Describe the method of testing independence of qualitative characteristics.

K16U 0703

PART – D (Long Essay)

Answer any 2 questions :

 $(2 \times 5 = 10)$

- 21. Derive the sampling distribution of the sample variance S² when we take samples from a Normal distribution.
- 22. Explain the method of moments in estimation. Obtain the estimators of the parameters of Beta (m, n) distribution, using method of moments.
- 23. A random sample of size 7 brand X light bulbs yielded, $\overline{X} = 891$ hours and $s^2 = 9201$. A random sample of size 10 brand Y light bulbs yielded $\overline{Y} = 592$ hours and $s^2 = 4856$. Test for equality of population variances at 0.05 significance level, stating the necessary assumptions.
- 24. A hospital administrator wishes to test the null hypothesis that emergency admissions follow a Poisson distribution with $\lambda = 3$. Over a period of 90 days, the numbers of emergency admission were as follows :

No. of emergency admissions in a day	Number of days (frequency)
0	5
1	14
2	15
3	23
4	16
5	9 .
6	3
7	3
8	1
9	1
10 or more	0

-3-