

K17U 0815

Reg.	No.	•	 	 	••••	 •••••	
Name	:.		 	 		 	

Fourth Semester B.Sc. Degree (CBCSS – Reg./Supple./Imp.) Examination, May 2017 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS 4B04 MAT : Elements of Mathematics – II

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the 4 questions are compulsory. Each question carries 1 mark.

- 1. Find the number of relations from $A = \{a, b, c\}$ to $B = \{1, 2\}$.
- 2. Define partially ordered set.
- 3. Find the rank of the matrix $\begin{bmatrix} 3 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$
- 4. When a square matrix is said to be non-singular?

 $(4 \times 1 = 4)$

```
SECTION - B
```

Answer any 8 questions. Each question carries 2 marks.

- 5. Find R^{-1} if $R = \{(1, 4), (1, 3), (3, 2)\}.$
- Define a recursive function to obtain the successive terms of the Fibonacci series.
- 7. Suppose that R is a partial order on A. Show that R^{-1} is also a partial order on A.

K17U 0815

-2-

- 8. Show that every finite lattice L is bounded.
- 9. Define supremum and infimum in a partially ordered set.
- 10. Find the coordinates of the point in which the line x + y = 6 is normal to the parabola $y^2 = 8x$.
- 11. Show that the tangent at the vertex of the parabola is perpendicular to the axis.
- 12. Find the equation of a tangent passing through (2, 8) to the hyperbola $5x^2 y^2 = 5$.
- 13. Reduce to normal form, the matrix $\begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 1 \\ 3 & 4 & 3 \end{bmatrix}$.
- 14. Is rank of AB = rank of A \times rank of B, where A and B are matrices ? Justify.

(8×2=16)

Answer any 4 questions. Each question carries 4 marks.

- 15. Find the inverse of the function $f(x) = \frac{2x-3}{5x-7}$.
- 16. Let R be the relation on the set of positive integers defined by $x \approx y$ if x + 3y = 12. Then write R as set of ordered pairs. Also find domain of R.
- 17. Let L be a bounded distributive lattice, then prove that complements are unique if they exist.
- 18. Find the equation of the tangent to the hyperbola $3x^2 y^2 = 3$, parallel to the line y = 2x + 4.
- 19. Find the equation of a tangent common to both the parabola $y^2 = 8x$ and the

ellipse
$$\frac{x^2}{4} + \frac{y^2}{15} = 1$$
.

20. Find the rank of the following matrix by reducing to row reduced echelon form

[1				
2	4	6	2	(4×4=16)
1	2	З	2	

K17U 0815

SECTION - D

Answer any 2 questions. Each question carries 6 marks.

- 21. Let $f : A \rightarrow B$, $g : B \rightarrow C$ be two functions prove :
 - a) g f is one to one then f is one to one.
 - b) g f is onto then g is onto.
- 22. Let L be complemented lattice with unique complements. Then prove that the join of irreducible elements of L, other than 0 are its atoms.
- 23. Find the locus of the point of intersection of perpendicular tangents to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

- 24. Using elementary transformation, compute the inverse of the matrix
 - $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$

(2×6=12)