

K18U 0947

Reg. No. :

Name :

IV Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, May 2018 COMPLEMENTARY COURSE IN STATISTICS FOR MATHEMATICS/ COMPUTER SCIENCE CORE 4C04STA : Statistical Inference (2014 Admn. Onwards)

Time : 3 Hours

Max. Marks: 40

 $(6 \times 1 = 6)$

PART – A

(Short Answer)

Answer all the 6 questions.

1. Define Student's distribution.

2. What do you mean by point estimation ?

3. State the Fischer Neymann factorisation criterion for sufficiency.

4. Define null and alternative hypothesis. Give one example for each.

5. Define power of a test.

6. Write down the test statistic for testing independence of attributes clearly mentioning each term.

PART – B (Short Essay)

Answer any 6 questions.

- 7. State and prove the reproductive property of Chi-square distribution.
- 8. Explain the interrelationship between t, F and Chi-square statistics.
- 9. If $X_1, X_2, ..., X_n$ are independent and identically distributed with mean μ and finite variance σ^2 , then show that \overline{X} is a consistent estimator of μ .

 $(6 \times 2 = 12)$

K18U 0947

- 10. Check the validity of the statement : If T is an unbiased estimator of θ , then T² is an unbiased estimator of θ^2 .
- 11. Let (20, 22, 21, 24, 21) be a random sample drawn N (μ , σ^2). Obtain a 95% confidence interval for σ^2 .
- 12. Distinguish between simple and composite hypothesis with illustrative examples.
- 13. Describe the procedure of testing single population proportion.
- 14. The growth of tumours in nine rats provided the data with $\overline{x} = 4.3$, s = 1.2. Test for H₀ : $\mu = 4$ against H₁ : $\mu \neq 4$ at $\alpha = 0.10$, assuming normal distribution for these growths.

Answer any 4 questions.

 $(4 \times 3 = 12)$

- 15. Derive the mean and variance of F distribution.
- If X₁, X₂,...,X_n are a random sample of size n from the distribution with probability density function (p.d.f.) f(x, θ) = θx^{θ-1}, 0 < x < 1, θ > 0, find the moment estimator of θ.
- 17. Derive the 95% confidence interval for σ^{2} , when a random sample of size n is taken from N (μ , σ^{2}), where μ and σ^{2} unknown.
- 18. If $x \ge 1$, is the critical region for testing $H_0: \theta = 2$ against $H_1: \theta = 1$ on the basis of a single observation from $f(x, \theta) = \theta e^{-\theta x}$, $0 < x < \infty$, $\theta > 0$, obtain the values of probability of Type I and Type II errors.
- 19. Describe the method of testing independence of attributes in a 2 × 2 contingency table.
- 20. What are the differences between usual t test and paired test ? Explain.

K18U 0947

PART – D

-3-

(Long Essay)

Answer any 2 questions.

 $(2 \times 5 = 10)$

- 21. Derive the sampling distribution of Chi-square statistic.
- 22. Find the maximum likelihood estimators of θ when X is a random variable with p.d.f.

i) $f(x, \theta) = 1, \ \theta - \frac{1}{2} < x < \theta + \frac{1}{2}$ ii) $f(x, \theta) = \theta(1 - \theta)^x, \ x = 0, \ 1, \ 2, ...$

23. The following are the numbers of a particular organism found in 100 samples of water from a pond. Test the hypothesis that these data are taken from a Poisson distribution.

No. of organisms	Frequency		
0	15		
1	30 25		
2			
3	20 5		
4			
5	4		
6	1		
7	0		

24. Discuss the association between general abilities and mathematical abilities of school boys based on the following data :

Mathematical ability	General Ability			Total
	Good	Fair	Poor	
Good	44	22	4	70
Fair	265	257	178	700
· Poor	41	91	98	230
Total	350	370	280	1000