

K16U 1716

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – 2014 Admn. – Regular) Examination, November 2016 CORE COURSE IN MATHEMATICS 5B06 MAT : Abstract Algebra

Time : 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions. Each question carries one mark.

1. How many generators are there for the cyclic group Z under addition ?

2. Write the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{pmatrix}$ as a product of disjoint cycles.

3. Find the order of the factor group $\mathbb{Z}_6 / \langle 3 \rangle$.

4. What are the units in \mathbb{Z}_4 ?

SECTION-B

Answer any 8 questions. Each question carries two marks.

5. Prove that every cyclic group is abelian.

6. Show that a group with no proper nontrivial subgroup is cyclic.

7. Find all orbits of the permutation σ : $\mathbb{Z} \to \mathbb{Z}$ where $\sigma(n) = n + 2$.

8. Show that S_n the symmetric group on n letters is nonabelian for $n \ge 3$.

9. Find the partition of the group \mathbb{Z}_6 into cosets of the subgroup H = {0, 3}.

10. Find Ker (ϕ) and ϕ (25) for the homomorphism ϕ : $\rightarrow \mathbb{Z}_7$ such that $\phi(1) = 4$.

 $(4 \times 1 = 4)$

K16U 1716

- 11. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.
- 12. Show that the rings $2\mathbb{Z}$ and $3\mathbb{Z}$ are not isomorphic.
- Show that the cancellation laws hold in a ring R if and only if R has no divisors of 0.
- 14. Show that the characteristic of an integral domain must be either 0 or a prime p.

 $(8 \times 2 = 16)$

SECTION - C

Answer any 4 questions. Each question carries four marks.

- 15. Let $S = \mathbb{R} \setminus \{-1\}$. Define * on S by a * b = a + b + ab. Show that $\langle S, * \rangle$ is a group.
- 16. State and prove Lagrange's theorem. Deduce that every group of prime order is cyclic.
- 17. Show that the collection of all even permutations of $n \ge 2$ letters forms a subgroup of order n!/2 of the symmetric group S_n .
- 18. Let ϕ be a homomorphism of a group G into a group G'. Prove the following.
 - a) If H is a subgroup of G then ϕ [H] is a subgroup of G'.
 - b) If K' is a subgroup of G' then ϕ^{-1} [K'] is a subgroup of G.
- 19. Describe all ring homomorphisms of $\mathbb{Z} \times \mathbb{Z}$ into \mathbb{Z} .
- 20. Show that the set G_n of nonzero elements of \mathbb{Z}_n that are not 0 divisions forms a group under multiplication modulo n. (4×4=16)

SECTION - D

Answer any 2 questions. Each question carries six marks.

- Let G be a cyclic group with generator a. If the order of G is infinite, show that G is isomorphic to (Z, +). Further, if G has finite order n, then show that G is isomorphic to (Z_n, +_n).
- 22. Show that every group is isomorphic to a group of permutations.

-3-

K16U 1716

- 23. a) If ϕ : G \rightarrow G' is a group homomorphism show that Ker (ϕ) is a normal subgroup of G.
 - b) Show that there are no nontrivial homomorphism $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_5$.
 - c) Determine the order of the element 26 + $\langle 12 \rangle$ in $\mathbb{Z}_{60}/\langle 12 \rangle$.
- 24. Let R be a ring that contains at least two elements. Suppose for each nonzero a∈R, there exists a unique b∈R such that aba = a.
 - a) Show that R has no divisors of 0.
 - b) Show that bab = b.
 - c) Show that R has unity.
 - d) Show that R is a division ring.

 $(2 \times 6 = 12)$