

K16U 1573

Reg. No. : Name :

> V Semester B.Sc. Degree (CCSS – Supple./Imp.) Examination, November 2016 CORE COURSE IN MATHEMATICS 5B06 MAT : Real Analysis (2013 and Earlier Admissions)

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) The set of all $x \in IR$ that satisfy |2x + 3| < 7 is _____
 - b) If $a \in \mathbb{R}$ is such that $0 \le a < \epsilon$ for every $\epsilon > 0$, then a =_____
 - c) inf $\left\{1 \frac{(-1)^n}{n} : n \in \mathbb{N}\right\} =$ _____
 - d) The ε -neighbourhood of a \in IR is _____ (Wt.= 1)

Answer any six questions from the following (Weightage one each) :

- 2. If x > -1, show that $(1 + x)^n \ge 1 + nx$, for all $n \in \mathbb{N}$.
- 3. If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, prove that $\inf S = 0$.
- 4. Using the definition of the limit of a sequence, prove that $\lim (\frac{1}{n}) = 0$.
- 5. If $X = (x_n)$, $Y = (y_n)$ are convergent sequences of real numbers and if $x_n \le y_n$, show that $\lim(x_n) \le \lim(y_n)$.

P.T.O.

K16U 1573

- 6. If the sequence of reals $X = (x_n)$ converges to x, show that the sequence $(|x_n|)$ of absolute values converges to |x|.
- 7. Prove that a Cauchy sequence of real numbers is bounded.
- 8. State the integral test for the convergence of a series.
- If f: I → IR is continuous on I, where I = [a, b] is a closed, bounded interval and if K ∈ IR is a number satisfying inf f(I) ≤ K ≤ sup f(I), prove that there exists a number c∈I such that f(c) = K.
- If f: A → IR, where A ⊆ IR, is uniformly continuous on A and if (x_n) is a Cauchy sequence in A, prove that (f(x_n)) is a Cauchy sequence in IR. (Weightage: 6×1=6)

Answer any seven questions from the following (Weightage 2 each) :

- 11. If x and y are any two real numbers with x < y, show that there exists a rational number $r \in Q$ such that x < r < y.
- 12. Prove that the set IR of real numbers is not countable.
- 13. If 0 < c < 1, prove that $\lim_{n \to \infty} \left(\frac{c^{\gamma_n}}{c} \right) = 1$.
- If X = (x_n) and Y = (y_n) are sequences of real numbers that converge to x and y respectively, show that X.Y converges to x.y.
- 15. Prove that a bounded sequence of real numbers has a convergent sub-sequence.
- 16. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent.
- 17. If $X = (x_n)$ is a convergent monotone sequence and if the series $\sum y_n$ is convergent, prove that the series $\sum x_n y_n$ is convergent.
- If I = [a, b] is a closed, bounded interval and if f: I → IR is continuous on I, prove that the set f(I) = {f(x) : x ∈ I} is a closed bounded interval.
- 19. If I is a closed, bounded interval and if $f: I \rightarrow IR$ is continuous on I, prove that f is uniformly continuous on I.

-2-

20. If $f: I \rightarrow IR$ is continuous on I, where I is a closed bounded interval, prove that there exists a continuous piecewise linear function $g_{\epsilon}: I \rightarrow IR$ such that

-3-

 $|f(x) - g_{\epsilon}(x)| < \epsilon$ for all $x \in I$.

(Weightage: 7×2=14)

Answer any three questions from the following (Weightage 3 each) :

- 21. If S is a subset of IR that contain at least two points and has the property that [x, y] ⊆ S whenever x, y ∈ S with x < y, prove that S is an interval.</p>
- 22. If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested sequence of closed bounded intervals such that the lengths $b_n a_n$ of I_n satisfy inf $\{b_n a_n : n \in \mathbb{N}\} = 0$, prove that there is a number $\xi \in IR$ such that $\xi \in I_n$ for all n, and also prove that ξ is unique.
- 23. Prove that a monotone sequence of real numbers is convergent if and only if it is bounded.
- 24. Prove that a function f is uniformly continuous on the interval (a, b) if and only if it can be defined at the end points 'a' and 'b' such that the extended function is continuous on [a, b].
- 25. State and prove the continuous inverse theorem. (Weighta

(Weightage: 3×3=9)