

K16U 1715

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – 2014 Admn. – Regular) Examination, November 2016 CORE COURSE IN MATHEMATICS 5B05 MAT : Real Analysis

Time : 3 Hours

Max. Marks : 48

SECTION - A

Answer all the questions. Each question carries one mark.

- 1. Find the infimum of $S = \left\{ \frac{1}{2^m} \frac{1}{3^n} : m, n \in \mathbb{N} \right\}$.
- 2. Give an example of a bounded sequence in \mathbb{R} that is not a Cauchy sequence.
- 3. If $\sum a_n$ with $a_n > 0$ is convergent, then is $\sum \sqrt{a_n}$ always convergent ? Either prove it or give a counter example.
- 4. Define $g : \mathbb{R} \to \mathbb{R}$ by

 $g(x) = \begin{cases} 2x & \text{if } x \text{ is rational} \\ x + 3 & \text{if } x \text{ is irrational} \end{cases}$

Determine the points at which g is continuous.

SECTION - B

Answer any 8 questions. Each question carries two marks.

- 5. Show that there does not exist a rational number r such that $r^2 = 2$.
- 6. Show that the set A = { $x \in \mathbb{R}$: $x^2 < 1 x$ } is bounded above, and then find its least upper bound.

 $(4 \times 1 = 4)$

K16U 1715

- -2-
- 7. If $x \in \mathbb{R}$, then show that there exists $n_x \in \mathbb{N}$ such that $x < n_x.$
- 8. Show that $\lim(n^{1/n}) = 1$.
- 9. Suppose that every subsequence of $X = (x_n)$ has a subsequence that converges to 0. Show that lim X = 0.
- 10. If the series $\sum x_k$ converges then show that $\lim(x_k) = 0$. Is the converse true ? Justify.
- 11. Establish the convergence or divergence of the series whose nth term is

$$\frac{n}{(n+1)(n+2)}$$
.

- 12. Let $\sum x_n$ be an absolutely convergent series in \mathbb{R} . Show that any rear-rangement $\sum y_k$ of $\sum x_n$ converges to the same value.
- 13. Give an example of functions f and g that are both discontinuous at a point c in \mathbb{R} but, both f + g and fg are continuous at c.
- 14. Let *I* be an interval and let $f: I \to \mathbb{R}$ be continuous on *I*. If a, $b \in I$ and if $k \in \mathbb{R}$ satisfies f(a) < k < f(b), show that there exists a point $c \in I$ between a and b such that f(c) = k. (8×2=16)

SECTION-C

Answer any 4 questions. Each question carries four marks.

15. If a, b $\in \mathbb{R}$, prove the following :

- i) $|a+b| \le |a|+|b|$
- ii) $||a| |b|| \le |a b|$.
- 16. Let S and T be bounded nonempty subsets of \mathbb{R} such that $S \subseteq T$. Prove that inf $T \leq \inf S \leq \sup S \leq \sup T$.

- 17. State and prove the Squeeze theorem on limits of sequences. Apply it to find $\lim_{n \to \infty} \left(\frac{\sin n}{n}\right)$.
- 18. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p > 1.
- Discuss the convergence or the divergence of the series with nth term (for sufficiently large n) given by (n /n n)⁻¹.
- 20. Let *I* be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous of *I*. Show that f is bounded on *I*. (4×4=16)

SECTION - D

Answer any 2 questions. Each question carries six marks.

- State and prove the nested intervals property. Using the same show that the set of real numbers is uncountable.
- 22. a) Show that every sequence of real numbers has a monotone subsequence.
 - b) Let (x_n) be a Cauchy sequence such that x_n is an integer for every $n \in \mathbb{N}$. Show that (x_n) is ultimately constant.
- 23. a) State and prove the Dirichlet's test for convergence of a series.
 - b) Test for convergence the series $1 \frac{1}{2} \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \frac{1}{6} \frac{1}{7} + \dots$, where the signs come in pairs.
- 24. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be strictly monotone and continuous on I. Show that the function g inverse to f is strictly monotone and continuous on f(I). (2×6=12)