

K17U 1695

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November 2017 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS 5B05 MAT : Real Analysis

Time: 3 Hours

Max. Marks: 48

SECTION-A

Answer all the questions. Each question carries one mark.

- 1. Find the supremum of $S = \left\{ \frac{1}{2^m} \frac{1}{3^n} : m, n \in \mathbb{N} \right\}$.
- 2. Give example of an unbounded sequence which is not monotonic.
- 3. Show that the series $\sum_{n=1}^{\infty} \cos n$ is divergent.
- 4. Let $f: A \to \mathbb{R}$ for $A \subset \mathbb{R}$. State the sequential criterion for continuity of f at $a \in A$. (4×1=4)

SECTION-B

Answer any 8 questions. Each question carries two marks.

- Show that if a, b ∈ R and a ≠ b, then there exist ∈ -neighborhoods U of a and V of b such that U ∩ V = 6.
- If x and y are real numbers with x < y then show that there exists a rational number r such that x < r < y.
- 7. Let A, B be two nonempty sets of real numbers with suprema α and β respectively. Define the set AB by AB = { $ab : a \in A, b \in B$ }. Give an example to show that AB need not have a supremum. Show also that even if AB has a supremum, this supremum need not be equal to $\alpha\beta$.
- Prove or disprove : If a sequence of positive terms (x_n) converges and (y_n) has the property that 0 ≤ y_n ≤ x_n for all n ∈ N, then (y_n) converges.

K17U 1695

- 9. Show that a sequence in \mathbb{R} can have at most one limit.
- 10. If a series $\sum x_n$ is convergent, show that any series obtained from it by grouping the terms is also convergent. Is the converse true ? Justify.
- 11. Test for convergence the series $\sum \frac{1}{n^2 n + 1}$.
- 12. If $\sum a_n$ and $\sum b_n$ are both divergent, is $\sum (a_n + b_n)$ necessarily divergent ? Justify.
- 13. Show that the sine function is continuous on \mathbb{R} .
- Let I be a closed bounded interval and let f: I → R be continuous on I. Show that the set f (I) is a closed bounded interval. (8×2=16)

SECTION-C

Answer any 4 questions. Each question carries four marks.

- 15. Show that the set \mathbb{R} of real numbers is uncountable. Deduce that the set \mathbb{R}/\mathbb{Q} of irrational numbers is also uncountable.
- 16. State and prove the Archimedean property of real numbers. Deduce that $\inf \{1/n : n \in \mathbb{N}\} = 0$.
- 17. Show that a bounded monotone sequence of real numbers is convergent.
- 18. State Raabe's test for the absolute convergence of a series. Using the same test
 - the convergence of $\sum \frac{n}{n+1}$.
- 19. a) Show that every absolutely convergent series in \mathbb{R} is convergent.
 - b) Test for convergence the series $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$.
- Let I be a closed bounded interval and let f: I → R be continuous on I. Show that f is uniformly continuous on I. (4×4=16)

-3-

SECTION - D

Answer any 2 questions. Each question carries six marks.

- 21. Show that there exists a positive real number x such that $x^2 = 2$.
- 22. State and prove the Cauchy criterion for the convergence of a sequence of real numbers.
- 23. a) Let (z_n) be a decreasing sequence of strictly positive numbers with $\lim(z_n) = 0$. Show that the series $\sum (-1)^{n+1} z_n$ is convergent.
 - b) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$.
- 24. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be monotone on I. Show that the set of points $D \subseteq I$ at which f is discontinuous is a countable set. (2×6=12)