

K17U 2255

Reg. No.	:	
----------	---	--

Name :

V Semester B.Sc. Degree (CCSS – Sup./Imp.) Examination, November 2017 (2013 and Earlier Admissions) CORE COURSE IN MATHEMATICS 5B05 MAT : Vector Analysis

Time : 3 Hours

Max. Weightage : 30

- 1. Fill in the blanks :
 - a) Area of the parallelogram with sides A, B is
 - b) Distance from a point S to a line through P parallel to V is _____
 - c) The gradient field of a differentiable function f(x, y, z) is the field of gradient vectors ∇f = _____
 - d) If u is a differentiable vector function of t of constant length, then the value of

 $u \cdot \frac{du}{dt} =$ _____

(Weightage 1)

Answer any six from the following (Weightage 1 each) :

- 2. Find the volume of the parallelopiped determined by $\overline{a} = -2i + 3k$, $\overline{b} = i + 2j k$ and $\overline{c} = 7j - 4k$.
- 3. Find a spherical co-ordinate equation for the cone $z = \sqrt{x^2 + y^2}$.
- 4. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if f (x, y) = y sin (xy).
- 5. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, x = r/s, $y = r^2 + ln s$, z = 2r.

K17U 2255

- Find the derivative of f(x, y) = xe^y + cos (x y) at the point (2, 0) in the direction of A = 3i 4j.
- 7. Find the area enclosed by the lemniscate $r^2 = 4 \cos 2 \theta$.
- 8. State stronger form of Fubini's theorem.
- 9. Find the curl of the vector field $F(x, y) = (x^2 y)i + (xy y^2)j$.

10. State Divergence theorem.

(6x1=6 Weightage)

Answer any seven from the following (Weightage 2 each) :

- 11. Find the centre and radius of the sphere $x^2 + y^2 + z^2 + 3x 4z + 1 = 0$.
- 12. Find a vector parallel to the line of intersection of the planes 3x 6y 2z = 15and 2x + y - 2z = 5.
- 13. Find the principal unit normal for the helix $r(t) = a \cos ti + a \sin tj + btk$, $a, b \ge 0$, $a^2 + b^2 \ne 0$.
- 14. Show that the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as (x, y) approaches (0, 0).
- 15. Find the local extreme values of f(x, y) = xy.
- 16. Find the derivative of the function f(x, y, z) = xy + yz + zx at (1, -1, 2) in the direction of 3i + 6j + k.
- 17. Find the slope of the tangent to the parabola at (1, 2, 5) where the plane x = 1 intersects the paraboloid $z = x^2 + y^2$ in a parabola.
- Find the center of mass of a thin hemispherical shell of radius 'a' and constant density ô.
- 19. Verify both forms of Green's theorem for the field F(x, y) = (x y) i + xj and the region R bounded by the circle $r(t) = \cos ti + \sin tj$, $0 \le t \le 2\pi$.
- 20. Show that $F = (2x 3)i zj + \cos zk$ is not conservative. (7×2=14 Weightage)

K17U 2255

Answer any three from the following (Weightage 3 each) :

21. Find the absolute maximum and minimum values of $f(x, y) = 2 + 2x + 2y - x^2 - y^2$ on the triangular plate in the first quadrant bounded by the lines x = 0, y = 0, y = 9 - x.

-3-

- 22. Find the curvature and torsion for the helix $r(t) = a \cos ti + a \sin tj + bt k$, $a, b \ge 0$, $a^2 + b^2 \ne 0$.
- Show that F = (e^x cosy + yz) i + (xy e^x siny) j + (xy + z) k is conservative and find a potential function for it.
- 24. Verify the Divergence theorem for the field F = xi + yj + zk over the sphere $x^2 + y^2 + z^2 = a^2$.
- 25. Find the centroid of the region in the first quadrant that bounded above the line y = x and bounded below by the parabola $y = x^2$. (3×3=9 Weightage)