

K18U 1475

Reg. N	10.	:	 	
Name	:		 	

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November 2018 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS 5B05 MAT : Real Analysis

Time : 3 Hours

Max. Marks: 48

 $(8 \times 2 = 16)$

SECTION - A

All the first 4 questions are compulsory. Each question carries 1 mark. (4x1=4)

- 1. Define the absolute value of a real number.
- 2. What is meant by a monotone sequence of real numbers ?
- State the ratio test for convergence of series.
- 4. State the Bolzano's intermediate value theorem.

SECTION - B

Answer any 8 questions. Each question carries 2 marks.

- 6. Prove that $|x a| < \epsilon$ if and only if $a \epsilon < x < a + \epsilon$.
- 7. If A and B are bounded subsets of \mathbb{R} , prove that A \cup B is also bounded.
- 8. Prove that the sequence (-1)ⁿ is divergent.
- 9. If (x_n) is a sequence of non negative real numbers, prove that $\lim x_n \ge 0$.

10. Assuming that the series $\sum \frac{1}{n^2}$ converges, prove that $\sum \frac{1}{n^2 + n}$ converges.

11. Prove that if $\sum x_n$ is absolutely convergent, then it is convergent.

K18U 1475

 $(4 \times 4 = 16)$

- 12. State and prove Abel's test for convergence of series.
- 13. Prove that f(x) = |x| is continuous everywhere in \mathbb{R} .
- 14. Is $g(x) = \sqrt{x}$ uniformly continuous on [0, 2]? Justify.

SECTION - C

Answer any 4 questions. Each question carries 4 marks.

- 15. State and prove the Archimedean property.
- Let A, B be bounded nonempty subsets of R. Let A + B = {a + b : a ∈ A, b ∈ B}.
 Prove that
 - a) sup (A + B) = sup A + sup B and
 - b) inf(A+B) = inf A + inf B.
- 17. Prove that every contractive sequence is a Cauchy sequence.
- 18. Prove that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p < 1.
- 19. State and prove the alternating series test.
- Prove that a continuous function on a closed and bounded interval is bounded.

Answer any 2 questions. Each question carries six marks.

 $(2 \times 6 = 12)$

- 21. a) State and prove the nested interval property.
 - b) If $I_n = [a, b], n \in \mathbb{N}$ is a nested sequence of closed and bounded invervals such that infimum of the lengths $b_n a_n$ is 0, prove that the number ξ contained in I_n for all $n \in \mathbb{N}$ is unique.
- a) Prove that a convergent sequence is bounded.
 - b) State and prove the monotone convergence theorem.
- a) If a series converges, prove that any series obtained by grouping its terms also converges to the same limit.
 - b) State and prove the rearrangement of series theorem.
- 24. State and prove the location of roots theorem.