0003715

Reg. No. :
Name :

V Semester B.Sc. Degree (CBCSS- Sup./Imp.) Examination, November-2019 (2014-2016 Admissions) Core Course in Mathematics 5B 09 MAT: GRAPH THEORY

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each. (4×1=4)

- 1. Define self-complementary graphs.
- 2. State Cayley's formula.
- 3. What is meant by covering of a graph?
- 4. Define digraph.

SECTION - B

Answer any 8 questions among the questions 5 to 14. These questions carry 2 marks each. (8×2=16)

- Prove that the sum of the degrees of the vertices of a graph is equal to twice the number of edges.
- 6. Let G be a simple graph. Prove that if G is disconnected then G^{ϵ} is connected.
- 7. Let G be a connected graph and e = xy be a cut edge of G. Prove that e does not belong to any cycle of G.
- 8. Determine the connectivity and edge-connectivity of the Petersen graph.
- Prove that a tree with at least two vertices contains at least two pendant vertices.
- 10. Define branch, weight, centroid vertex of a vertex of a tree.
- **11.** For any graph *G* with *n* vertices, prove $\alpha + \beta = n$.
- 12. Define Hamiltonian graphs and traceable graphs.
- 13. Define a symmetric digraph with an example.
- 14. Define in degree and out degree of a digraph with an example.

K19U 2258

(2)

SECTION - C

Answer any 4 questions among the questions 15 to 20. These questions carry 4 marks each. (4×4=16)

- 15. Explain with examples any four operations of graphs.
- **16.** Prove that if G is a line graph, then $K_{1,3}$ is a forbidden subgraph of G.
- 17. Prove that a connected graph with at least two vertices contains at least two vertices that are not cut vertices.
- Prove that every tree has a center consisting of either a single vertex or two adjacent vertices.
- **19.** Determine the values of the parameters $\alpha, \beta, \alpha', \beta'$ for K_n .
- **20.** Prove that a simple graph G with $n \ge 3$, if $d(u)+d(v) \ge n-1$ for every pair of non adjacent vertices u and v of G, then G is traceable.

SECTION - D

Answer any 2 questions among the questions 21 to 24. These questions carry 6 marks each. (2×6=12)

21.	a)	Define line graphs	(1)	1
		3	(.)	ſ

- b) Let G_1 and G_2 be simple graphs. Prove that if G_1 and G_2 are isomorphic then $L(G_1)$ and $L(G_2)$ are isomorphic. (3)
- Does the converse hold? Justify.
- **22.** a) Prove that for any loopless connected graph $k(G) \le \lambda(G) \le \delta(G)$. (4)
 - b) Determine k(P) and $\lambda(P)$ for the Petersen graph P. (2)
- 23. For any non-trivial connected graph G, prove the following statements are equivalent.(6)
 - i) G is Eulerian.
 - ii) The degree of each vertex of G is an even positive integer.
 - iii) G is an edge-disjoint union of cycles.
- 24. a) Define tournaments and display all tournaments on three vertices.(2)
 - b) Prove that every tournament contains a directed Hamilton path. (4)