

0058646

K19U 2254

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November - 2019 (2014 Admn. Onwards) Core Course in Mathematics 5B05 MAT : REAL ANALYSIS

Time : 3 Hours

Max. Marks: 48

SECTION - A

Instructions: Answer all questions. Each question carries One mark. (4×1=4)

- 1. State Arithmetic-Geometric Mean Inequality.
- **2.** Find $\sup\left\{\frac{1}{m}-\frac{1}{n}:n\in\mathbb{N}\right\}$.
- 3. Show that the sequence $\left(\frac{1}{n}\right)$ is a Cauchy sequence.
- 4. State Weierstrass Approximation theorem.

SECTION - B

Answer any Eight questions. Each carries Two marks. (8×2=16)

- 5. State and prove triangle inequality.
- 6. Show that the sequence (2ⁿ) does not converges.
- 7. Show that the series $\sum_{n=1}^{\infty} \cos n$ is divergent.
- 8. Show that if a convergent series contains only a finite number of negative terms, then prove that it is absolutely convergent.
- 9. Let $X = (x_n)$ be a nonzero sequence in \mathbb{R} and let $a = \lim \left(n \left(1 \left| \frac{x_{n-1}}{x_n} \right| \right) \right)$,

whenever the limit exists. Then prove that $\sum x_n$ is absolutely convergent when a > 1 and is not absolutely convergent when a < 1.

P.T.O.

K19U 2254

(2)

10. What do you mean by saying that a function is continuous at a point c.

- **11.** Let $A \subset \mathbb{R}$, let f and g be functions on $A \text{ to } \mathbb{R}$, and if $g(x) \neq 0$ for all $x \in \mathbb{R}$. Suppose that $c \in A$ and that f and g are continuous at c. Then show that f/g is continuous at c.
- **12.** Give an example of two functions f and g that are both discontinuous at a point c in \mathbb{R} such that the sum f + g is continuous at c.
- **13.** If $f: A \to \mathbb{R}$ is a Lipschitz function, then prove that f is uniformly continuous on A.
- 14. Let $I \subset \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be increasing on I. If $c \in I$ then prove that f is continuous at c if and only if $j_t(c) = 0$, where $j_t(c)$ is the jump of f at c.

SECTION - C

Answer any Four questions. Each carries Four marks. (4×4=16)

- 15. Prove that the set \mathbb{R} of real numbers is not countable.
- 16. Let $X = (x_n)$ and $Z = (z_n)$ be sequences of real numbers that converges to x and z, respectively, where z_n and z are nonzero real numbers. Then show that X/Z converges to x/z.
- 17. Let A be an infinite subset of \mathbb{R} that is bounded above and let $u = \sup A$. Show that there exists an increasing sequence (x_n) with $x_n \in A$ for all $n \in \mathbb{N}$ such that $u = \lim(x_n)$.
- 18. Show that every contractive sequence is a Cauchy sequence and therefore is convergent.
- 19. State and prove Abel's test for the convergence of the product of two series.
- **20.** Let I = [a, b] be a closed, bounded interval and let $f : I \to \mathbb{R}$ be continuous on *I*. If $k \in \mathbb{R}$ is any number satisfying inf $f(I) \le k \le \sup f(I)$, then prove that there exists a number $c \in I$ such that f(c) = k.

SECTION - D

(3)

K19U 2254

Answer any Two questions Each question carries six marks.(2×6=12)

21. a) If
$$S = \left\{\frac{1}{n} : n \in S\right\}$$
 then prove that $\inf S = 0.$ (2)

- b) Prove that there exists a positive number x such that $x^2 = 2$. (4)
- 22. a) Let $X = (x_n : n \in \mathbb{N})$ be a sequence of real numbers and let $m \in \mathbb{N}$. Then prove that the *m*-tail converges if X converges. (2)
 - b) Let a > 0. Construct a sequence s_n of real numbers that converges to \sqrt{a} . (4)
- 23. a) Let X = (x_n) be a sequence in ℝ and suppose that the limit r = lim |x_n|ⁿ/n exists in ℝ. Then prove that ∑x_n is absolutely convergent when r < 1 and is divergent when r > 1.
 (3)
 - b) Show that the absolute value function f(x) = |x| is continuous at every point c ∈ ℝ.
 (3)
- 24. a) What do you mean by saying that a function is bounded on a subset of \mathbb{R} . Give an example of a bounded set. (2)
 - b) Show that every polynomial of odd degree with real coefficients has at leat one real root. (4)