	OSCO ARTS AND SCIENCE
Reg. No. :	Z (- LIBRARY
Name :	* 4000000

M 485

VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS-Regular) Examination, April 2012 CORE COURSE IN MATHEMATICS 6B12 MAT : Linear Algebra

Time : 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) Dimension of P_n(t) of all polynomials of degree less than or equal to n with real coefficients is _____
 - b) Is every vector space have a basis ?
 - c) Roots of characteristic equation of a square matrix is known as _____
 - d) If a matrix A is in row-reduced echelon form, then the rank of A is _____

(Weightage 1)

(Weightage 1 each)

Answer any six from the following :

- 2. Define basis of a vector space.
- 3. Prove that every subset of a linearly dependent set is linearly dependent.
- 4. Prove that the set of all symmetric matrices of order n is a subspace of the vector space of all square matrices of order n.
- 5. Explain the conditions for the consistency and number of solutions of non-homogeneous linear system of equations AX = B.
- 6. If λ is an eigen value of A, prove that λ^n is an eigen value of Aⁿ.
- 7. State Cayley Hamilton theorem.

M 485

8. Check whether the function T : $\mathbb{IR}^3 \rightarrow \mathbb{IR}^2$ defined by T(x, y, z) = (x + 1, y + z) is a linear transformation or not.

-2-

- 9. Define null space and range space of a linear transformation.
- 10. Define inverse of a linear transformation.(Weightage 6×1=6)Answer any seven from the following :(Weightage 2 each)
- 11. Show that $\{(1, 0, 0) (0, 1, 0), (1, 1, 1)\}$ is a basis for IR³.
- 12. Check whether or not $u = 2t^2 + 4t 3$ and $v = 4t^2 + 8t 6$ are linearly dependent.
- 13. Test for consistency and solve the equations x + y + z = 6, x + 2y + 3z = 14, x + 4y + 7z = 30.
- 14. Determine the values of λ for which the system of equations $3x + y \lambda z = 0$; 4x - 2y - 3z = 0; $2\lambda x + 4y + \lambda z = 0$ may possess non-trivial solution.

		8	-6	2	
15.	Find the eigen values of	-6	7	-4	
		2	-4	3	

- 16. Prove that eigen vectors corresponding to distinct eigen values of a matrix are linearly independent.
- Let T: U → V be a linear map. Prove that T is one-to-one if and only if null space of T is {0}.
- 18. Find the null space, range and their dimensions of the linear transformation $T: R^3 \rightarrow R$ defined by T(x, y, z) = x + 3y.
- 19. Let T be a linear operator on P₂, the set of all polynomials of degree ≤ 2 , defined by T(a₀ + a₁x + a₂x²) = a₀ + (a₁ a₂) x + (a₀ + a₁ + a₂)x². Find T⁻¹.

	[1	2	3	
20. Find the rank of the matrix $A =$	1	4	2	(Weightage 7×2=14)
	2	6	5	

Answer any three from the following :

21. Check whether IRⁿ is a vector space over IR or not with respect to the operations defined as follows. $(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ $\alpha(x_1, x_2, ..., x_n) = (\alpha x_1, \alpha x_2, ..., \alpha x_n).$

-3-

 $\begin{bmatrix} 1 & 0 & 2 \\ 3 & 1 & -1 \\ -2 & 1 & 3 \end{bmatrix}$ 22. Using row elementary transformations, find the inverse of the matrix

23. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$

24. Diagonalise the matrix
$$A = \begin{bmatrix} 0 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

25. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y, z) = (0, x+y, x+y+z). Find the matrix representation of T with respect to the ordered basis

 $X = \{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}$ in IR³ and $Y = \{(1, 0, 0), (0, 1, 0), (0, 0, 1) \text{ in } IR^3.$ (Weightage 3x3=9)

(Weightage 3 each)

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$