

K19U 0122

Reg. N	0.	:	•••	 	 	•••	•••	 			•••	 	
Name	:			 	 			 	 				

VI Semester B.Sc. Degree (CBCSS-Reg./Supple./Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B10 MAT : Linear Algebra

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- Give an example of a proper non trivial subspace of P(R), the vectorspace of all polynomials with real coefficients.
- 2. A subset of a linearly dependent set can possibly be linearly independent. Justify by giving an example.
- 3. The null space of the operator T : $R^2 \mapsto R^2$ given by T(a₁, a₂) = (a₁, 0) is
- 4. The number of linearly independent solutions of the equation x + y + z = 0 is

SECTION - B

Answer **any 8** questions from among the questions **5** to **14**. These questions carry **2** marks **each**.

- In any vectorspace V show that (a + b) (x + y) = ax + bx + ay + by for all scalars a and b and all vectors x and y.
- Let V = R² = R × R where vector addition and scalar multiplication are defined by;
 (x₁, x₂) + (y₁, y₂) = (x₁ + y₁, x₂ + y₂) and r(x₁, x₂) = (rx₁, x₂).
 Is V a vectorspace over R ? Justify.
- Show that any intersection of subspaces of a vectorspace V is again a subspace of V.
- Let T : V → W be a linear transformation. Prove that N(T), the nullspace of T, is a subspace of V.
- Let T : V → W be an invertible linear transformation. Use dimension theorem to observe that dimV = dimW.
 P.T.O.

K19U 0122

- Let V = C[a,b] be the vectorspace of all continuous real valued functions defined over the closed bounded interval [a, b]. Describe the fundamental theorem of calculus interms of linear transformations on V.
- 11. Find the values of λ for which the following system of equations have non zero solutions.

 $\lambda x + 8y = 0$ $2x + \lambda y = 0$

- 12. Verify that the set of all characteristic vectors of a square matrix associated with a fixed characteristic value λ is a subspace of the respective Eucledian space.
- 13. Use Gauss elimination to solve the system of equations :

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

14. Use Gauss Jordan elimination to solve the system of equations :

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Define vectorspace and show that in every vector space (-1) x is the additive inverse of x.
- 16. Define a basis of a vectorspace. Give an example of a basis of $M_{2\times 2}(R)$.
- 17. Let V and W be vectorspaces and let T : V → W be linear. Then prove that T is one to one if and only if N(T) = {0}.
- Suppose that AX = B has a solution. Show that this solution is unique if and only if AX = 0 has only the trivial solution.

-3-

K19U 0122

19. Test the following system of equations for consistency and solve it if it is consistent.

x + 2y + 3z = 143x + y + 2z = 112x + 3y + z = 11

20. Find the largest characteristic value and a corresponding characteristic vector of the matrix.

 $\begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. If S is a nonempty subset of a vectorspace V, then show that span (S) is a subspace of V and is the smallest subspace of V containing S. Under what further condition S can become a basis of V ?
- 22. Let V and W be vectorspaces over a common field F and suppose that V has a basis {x₁, x₂, ..., x_n}. Prove that for any fixed vectors y₁, y₂, ..., y_n in W there exists exactly one linear transformation T : V → W such that T(x_i) = y_i for i = 1 ... n.
- 23. Show that the matrix

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$$

satisfies Cayley Hamilton theorem and hence obtain A-1.

24. Prove that

$$A = \begin{bmatrix} 0 & -2 & -3 \\ 1 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

is diagonalizable and find the diagonal form.