

K19U 0126

Reg. No.	:
Name ·	

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B14 MAT : (Elective – A) : Operations Research

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Define positive semi definite quadratic form.
- 2. Define the term feasible solution of a linear programming problem.
- 3. What is an unbalanced transportation problem ?
- 4. Define two person zero sum game.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Show that $S = \{(x_1, x_2) : x_1^2 + x_2^2 \le 4\}$ is a convex set.
- 6. Write the quadratic form $x_1^2 + 2x_2^2 7x_3^2 4x_1x_2 + 3x_1x_3 5x_2x_3$ in the form X^TAX.
- 7. Obtain all basic solutions to the following system of linear equations :

 $x_1 + 2x_2 + x_3 = 4 : 2x_1 + x_2 + 5x_3 = 5.$

8. State the general LPP in the standard form.

P.T.O.

K19U 0126

9. Give a mathematical formulation of the transportation problem.

- 10. Explain loops in transportation tables.
- 11. Explain the difference between transportation problem and assignment problem.
- 12. What is no passing rule in a sequencing algorithm ?
- 13. What are the properties of a game ?
- 14. Explain the concept of value of the game.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Prove that the set of all convex combinations of a finite number of points $S \subset R^n$ is a convex set.
- 16. A firm manufactures two types of products A and B and sells them at a profit of Rs. 2 on type A and Rs. 3 on type B. Each product is processed on two machines G and H. Type A requires 1 minute of processing time on G and 2 minutes on H; type B requires 1 minute on G and 1 minute on H. The machine G is available for not more than 6 hours 40 minutes while machine H is available for 10 hours during any working day. Formulate the problem as a linear programming problem.
- 17. What are the methods for finding initial basic feasible solution of the transportation problem ? Explain any one.
- 18. Describe a method of drawing minimum number of lines in the context of assignment problem.
- 19. What are the main assumptions made while dealing with sequencing problem ?
- 20. Find the saddle point of the payoff matrix.
 - $\begin{pmatrix}
 4 & 1 & -3 \\
 3 & 2 & 5 \\
 0 & 1 & 6
 \end{pmatrix}$

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

21. Solve using simplex method :

Maximize $Z = 5x_1 + 3x_2$

Subject to $3x_1 + 5x_2 \le 15$

 $5x_1 + 2x_2 \le 10$ and $x_1 \ge 0, x_2 \ge 0$.

22. Describe MODI method in transportation problem.

23. Solve the following assignment problem ?

	1	2	3	4	
А	49	60	45	61	
В	55	63	45	61	
С	52	62	49	68	
D	55	64	48	66	

24. Solve the following 2×3 game graphically.

	Player B		
Diavar A	(1	3	11)
Player A	8	5	2)