

Reg. No. :

VI Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.) Examination, May 2014 CORE COURSE IN MATHEMATICS 6B10 MAT : Analysis and Topology

Time : 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) If $P = \{1, 1.5, 2.1, 2.6, 3\}$ is a partition of [1, 3], then ||P|| =_____
 - b) The radius of convergence of the series $\sum n! x^n$ is _____
 - c) A subset of a topological space is said to be dense if ______
 - d) A topological space is said to be separable if it has _____ (Wt. 1)

Answer any six from the following. Weight 1 each.

- 2. Prove that every constant function is Riemann integrable.
- 3. State the Cauchy criterion for the Riemann integrability of a real valued function.
- 4. Show that $\lim_{x \to \infty} \left(\frac{nx}{1+nx} \right) = 1$ for every $x \in \mathbb{R}$, x > 0.
- If (f_n) is a sequence defined on a subset D of real numbers with values in ℝ, define the convergence of ∑f_n.
- 6. Prove that \overline{A} equals the intersection of all closed supersets of A.
- 7. Prove that in any metric space each closed sphere is a closed set.

M 6051

M 6051

- 8. If X is a metric space and A \subset X, prove that A is closed in X if and only if A = \overline{A} .
- 9. Prove that in a metric space, the complement of a closed set is open.
- 10. If X is a topological space and A and B are non-empty subsets of X, prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. (6×1=6)

Answer any seven from the following. Weight 2 each.

- 11. If f is Riemann integrable on [a, b], prove that f is bounded on [a, b].
- 12. If $f \in R[a, b]$, prove that $|f| \in R[a, b]$.
- 13. If (f_n) is a sequence of continuous function on a set $A \subseteq \mathbb{R}$ and if (f_n) converges uniformly on A to a function $f : A \to \mathbb{R}$, prove that f is continuous on A.
- 14. Prove that a sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $||f_n f||_A \to 0$.
- If R is the radius of convergence of the power series ∑a_nxⁿ, then prove that the series to absolutely convergent if |x| < R and is divergent if |x| > R.
- 16. If X is a metric space, prove that a subset G of X is open if and only if it is a union of open sets.
- 17. Show that if {A_n} is a sequence of nowhere dense sets is a complete metric space X, there exists a point in X which is not in any of the A_n's.
- 18. If a convergent sequence in a metric space has infinitely many distinct points, then prove that its limit is a limit point of the set of points of that sequence.
- 19. If X is a topological space and A is an arbitrary subsets of X, then prove that $\overline{A} = \{x : \text{each neighbourhood of } x \text{ intersects } A\}.$
- Show that a subset of a topological space is perfect if and only if it is closed and has no isolated points. (7×2=14)

Answer any three from the following. Weight 3 each.

- 21. If there is a finite set E in [a, b] and functions f, F : [a, b] $\rightarrow \mathbb{R}$ such that :
 - i) F is continuous on [a, b]
 - ii) F'(x) = f(x) for all $x \in [a, b] \setminus E$ and
 - iii) $f \in R[a, b]$, then prove that $\int_{a}^{b} f = F(b) F(a)$.
 - 22. If (f_n) is a sequence of function in R[a, b] and suppose (f_n) converges uniformly on [a, b] to f, then prove that $f \in R[a, b]$.
 - 23. If X is a metric space with metric d, prove that $d_1(x, y) = d(x, y)/(1 + d(x, y))$ is also a metric on X.
 - 24. If X is a complete metric space and Y is a subspace of X, prove that Y is complete if and only if it is closed.
 - 25. State and prove Cantor's intersection on theorem.

 $(3 \times 3 = 9)$