

M 6052

Reg. No.			
----------	--	--	--

Name :

VI Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.) Examination, May 2014 CORE COURSE IN MATHEMATICS 6B11 MAT : Complex Analysis

Time: 3 Hours

Max. Weightage: 30

(W = 1)

Instruction : Answer to all questions.

- 1. Fill in the blanks :
 - a) The principal argument of Arog (z) when $z = \frac{i}{-2-2i} =$ _____
 - b) When z_2 and z_3 are non-zero complex numbers then
 - $\overline{\left(\frac{z_1}{z_2 z_3}\right)} = \underline{\qquad}$
 - d) $\overline{z} + 3i =$ _____

From questions 2 to 10; answer any six.

2. Prove that z is real if and only if $\overline{z} = z$.

- 3. Prove that $\overline{z_1 + z_2 + \ldots + z_n} = \overline{z}_1 + \overline{z}_2 + \overline{z}_3 + \ldots + \overline{z}_n$ for $n = 2, 3, 4, \ldots$
- 4. Find the exponential form of the complex number -1-i.
- 5. Find the derivative of $f(x) = e^x (\cos y + i \sin y)$.
- 6. Define an entire function. Give an example.

M 6052

- 7. State Cauchy-Goursat theorem.
- 8. Prove that f (z) = $|z|^2$ is differentiable only at the origin.
- 9. If R is the radius of convergence of $\sum a_n z^n$, what is the radius of convergence

 $\sum a_n^2 z^n$?

10. Find the residue of f (z) = tanz at $z = \pi/4$.

From questions 11 to 20; answer any 7:

- 11. Verify Cauchy-Riemann equations for the function $f(z) = z^2$.
- 12. Show that $U = e^x (x \cos y y \sin y)$ satisfies the Laplace's equation.
- 13. Prove the fundamental theorem of algebra.
- 14. Prove that a bounded entire function is a constant.
- 15. Show that an analytic function f(z) is a constant if its modulas is constant.
- 16. State Cauchy's Residue theorem.
- 17. Expand cosz about $z = \frac{\pi}{2}$ using Taylor's series.

18. What type of singularity have the $f(z) = \frac{1}{\sin z - \cos z}$ at $z = \pi/4$?

- 19. Find the residue of $f(z) = \frac{z^2}{z^2 + 4}$ at its poles.
- 20. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(ni)^2}{(2n)!} z^n$. (W = 7×2=14)

 $(W = 6 \times 1 = 6)$

-3-

From questions 21 to 25; answer any 3:

- 21. Find the harmonic conjugate of the function $u(x, y) = y^3 3x^2y$.
- 22. State and prove Cauchy's integral formula.
- 23. Find two Laurent series expansions, in powers of z for the function
 - $f(z) = \frac{1}{z(1+z^2)}.$
- 24. When a singularity is said to be isolated ? What are different kinds of isolated singularities. Give example for each.

25. Prove that
$$\int_{0}^{2\pi} \frac{d\theta}{1 + a\cos\theta} = \frac{2\pi}{\sqrt{1 - a^2}} (-1 < a < 1).$$
 (W = 3×3=9)