

K16U 0202

Reg. No. :

Name :

VI Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.) Examination, May 2016 CORE COURSE IN MATHEMATICS 6B11 MAT : Complex Analysis

Time : 3 Hours

Max. Weightage: 30

1. Fill in the blanks (weightage 1) :

a) If $z_1 = 8 + 3i$ and $z_2 = 9 - 2i$, then $z_1/z_2 =$ _____

- b) If a function $f: \mathbb{C} \to \mathbb{C}$ is continuous at z_0 , then lim $f(z) = \frac{1}{2}$
- c) The singularities of $\frac{1}{\sin(\pi/2)}$ are

d) If
$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n$$
, then residue of $f(z)$ at $z = a$ is _____ (W = 1)

Answer any six questions from the following nine questions (weightage one each).

- 2. Reduce the quantity $\frac{1+2i}{3-4i} + \frac{2-i}{5i}$ to a real number.
- 3. Show that |z 1 + 3i| = 2 represents a circle, find its centre and radius.
- 4. Show that $f(z) = \overline{z}$ is not differentiable, where z = x + iy.
- 5. Show that $u(x, y) = \frac{y}{x^2 + y^2}$ is harmonic.
- 6. Find the values of z such that $e^z = 1$.

P.T.O.

K16U 0202

7. Evaluate
$$\int_{C} \frac{z}{(9-z^2)(z+i)} dz$$
.

8. Prove that $\sin^{-1}(z) = -i \log \left[iz + (1-z^2)^{\frac{1}{2}} \right]$.

9. State the Cauchy's residue theorem.

10. Find the residue of
$$f(z) = \frac{z}{(z-1)(z+1)^2}$$
 at the poles. (6×1=6)

Answer any 7 questions from the following 10 questions (weightage 2 each).

- 11. Prove that an analytic function of constant absolute value is a constant.
- 12. Show that $u(x, y) = y^3 3x^2y$ is harmonic and find its harmonic conjugate.
- 13. If w(t), a complex valued function of a real variable, is integrable on [a, b], show

that
$$\left| \int_{a}^{b} w(t) dt \right| \leq \int_{a}^{b} |w(t)| dt$$
.

- 14. Find all the values of $(-8i)^{\frac{1}{3}}$.
- 15. Find $\int_{\Omega} z^{\gamma_2} dz$, where $z = 3e^{i\theta}$, $0 \le \theta \le \pi$.
- 16. Find the Laurent series of $f(z) = \frac{-1}{(z-1)(z-2)}$ in 1 < |z| < 2.
- 17. If f(z) is analytic inside and on a positively oriented circle C with centre at z_0 and radius R, show that $|f^n(z_0)| \le \frac{n!M}{R^n}$ (n = 1, 2, ...), where M is a positive real number such that $|f(z)| \le M$.

- 18. If $z = z_0$ is a pole of order m of an analytic function f(z), show that $f(z) = (z z_0)^m g(z)$, where g(z) is analytic and non-zero at z_0 .
- 19. Show that $z = \frac{\pi i}{2}$ is a simple pole of $f(z) = \frac{\tanh z}{z^2}$ and find the residue of f(z) at this pole.
- 20. If two functions p and q are analytic at a point z_0 , $p(z_0) \neq 0$, $q(z_0) = 0$ and

 $q'(z_0) \neq 0$, show that z_0 is a simple pole of the quotient $\frac{p(z)}{q(z)}$ and also prove that

Res
$$\frac{p(z)}{z=z_0} = \frac{p(z_0)}{q(z_0)}$$
.

(7×2=14)

Answer any 3 questions from the following 5 questions (weightage 3 each).

21. If f(z) = u(x, y) + iv(x, y), $z_0 = x_0 + iy_0$ and $w_0 = u_0 + iv_0$, show that

$$\lim_{z \to z_0} f(z) = w_0 \text{ if and only if } \lim_{(x, y) \to (x_0, y_0)} u(x, y) = u_0 \text{ and}$$

$$\lim_{(x, y) \to (x_0, y_0)} v(x, y) = v_0.$$

- 22. If f(z) = u(x, y) + iv(x, y) is defined throughout some ε -neighbourhood of $z_0 = x_0 + iy_0$, u_x , u_y , v_x , v_y exist and are continuous everywhere in this neighbourhood and u and v satisfy the Cauchy-Riemann equations at (x_0, y_0) , show that $f'(z_0)$ exists.
- 23. State and prove Cauchy's integral formula.
- 24. State and prove Liouville's theorem.
- 25. If f(z) is analytic throughout a disk $|z z_0| < R_0$ centred at z_0 and with radius R_0 ,

show that f(z) has the power series representation f(z) = $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, where

$$a_n = \frac{f^{(n)}(z_0)}{n!} .$$

 $(3 \times 3 = 9)$