

Reg. N	Vo.	:	
--------	-----	---	--

Name :

VI Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.)

Examination, May 2016

Core Course in Mathematics

6B13 MAT : INTEGRAL TRANSFORMS

Time: 3 Hours	Max. Weightage: 30
HING . O HOUIS	man rroiginago.co

- 1. Fill in the blanks:
 - a) Laplace transform of t is _____
 - b) A function without fundamental period is
 - c) Example for an odd function is _____
 - d) Z(k) = ____

(Weightage 1)

Answer any six from the following (Weightage 1 each).

- 2. State linearity property of Laplace transform.
- 3. Find L (te^{-3t}).
- 4. Find the inverse Laplace transform of $\frac{4}{s^2-2s-3}$.
- 5. Explain the convergence of Fourier series expansion of functions.
- 6. State second shifting theorem for Z-transform.
- Find Z-transform of n (n − 1).
- 8. Find Z-transform of $e^{2(t+T)}$.
- 9. State Fourier integral theorem.
- 10. Find Fourier cosine transform of

$$f(x) = \begin{cases} x & 0 < x < a \\ 0 & x > a \end{cases}.$$

(Weightage 6×1=6)

Answer any seven from the following (Weightage 2 each).

- 11. Define Dirac's delta function. Also find its Laplace transform.
- 12. Find the inverse Laplace transform of $\log \left(\frac{s+1}{s-1} \right)$.
- 13. Find the Fourier series expansion of e^{-x} in the interval (-l, l).
- 14. Express $f(x) = x^2$ as a half range sine series in $0 < x < \pi$.
- 15. Obtain the complex form of the Fourier series formula.
- 16. State and prove convolution theorem for Z-transforms.
- 17. Find the Z-transform of f * g where $f(n) = 3^n$ and $g(n) = \cos n\theta$.
- 18. Using power series method, find the inverse Z-transform of $log(\frac{z}{z+1})$.
- 19. Prove that $\int_0^\infty \frac{w \sin xw}{k^2 + w^2} dw = \frac{\pi}{2} e^{-kx}, \ x > 0, \ k > 0.$
- 20. Let f (x) be continuous on the x-axis, f (x) \rightarrow 0 as $|x| \rightarrow \infty$ and f'(x) be absolutely integrable on the x-axis, then prove that

$$F\{f''(x)\} = -w^2 F\{f(x)\}.$$

(Weightage 7×2=14)

Answer any three from the following (Weightage 3 each).

21. If f (t) is a periodic function with period T, then prove that

$$L(f(t)) = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$$

22. Using Laplace transform, solve the initial value problem :

$$y''' - 3y'' + 3y' - y = t^2 e^t$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = -2$

23. Obtain the Fourier series for the function $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 2\pi - x, & \pi \le x \le 2\pi \end{cases}$

Deduce that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ... = \frac{\pi^2}{8}$$
.

- 24. a) Find Z-transform of $r^n \sin n\theta$.
 - b) Find the inverse Z-transform of $\frac{z^3 20z}{(z-2)^3(z-4)}$.
- 25. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & |x| < 1 \\ 0, & |x| < 1 \end{cases}$

Hence evaluate
$$\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \left(\frac{x}{2}\right) dx$$
.

(Weightage 3×3=9)