

K16U 0203

Reg. No. :

Name :

VI Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.) Examination, May 2016 CORE COURSE IN MATHEMATICS 6B12 MAT : Linear Algebra

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) Dimension of trivial vector space {0} is ______
 - b) The largest subspace of a vector space V is _____
 - c) In a row reduced echelon matrix, if a column contains leading entry 1, then all other entries in that column are _____
 - d) If T is a linear transformation, then the dimension of range space of T is known as ______ (Weightage : 1)

Answer any six from the following :

(Weightage: 1 each)

- 2. What do you mean by span of a set?
- 3. Give a basis for C.
- 4. Prove that $W = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_2 + x_3 = 0 \}$ is a subspace of $V = \mathbb{R}^3$.
- 5. Using graphs, solve 2x + y = 3; 4x + 2y = 6.
- 6. What do you mean by row-rank of a matrix ?
- 7. If $\lambda \neq 0$ is an eigen value of a non-singular matrix A, prove that $\frac{1}{\lambda}$ is an eigen value of A ⁻¹.
- 8. If T : U \rightarrow V be a linear map, then prove that T(0₁₁) = 0_v.

(Weightage 2 each)

- 9. Define kernal of a linear transformation.
- 10. What do you mean by idempotent map? Give an example. (Weightage 6×1=6)

Answer any seven from the following :

K16U 0203

 Let F be the set of all real valued functions from R into R. Show that F is a vector space with respect to the operations.

 $(f + g)(x) = f(x) + g(x); \text{ and } (\alpha f)(x) = \alpha f(x) \forall x \in \mathbb{R}.$

- Determine whether or not the vectors (1, -1, 2), (2, 3, 1) and (4, 5, 6) in ℝ³ are linearly dependent.
- 13. Show that the equations 2x 3y + 4z = 23, 3x + 4y 8z = -19,

$$4x - y - 2z = 11$$
, $x + 2y - 2z = -7$ are consistent and solve them.

14. Find the eigen values and eigen vector corresponding to the largest eigen value

of the matrix
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$
.

- Prove that eigen vectors corresponding to distinct eigen values of a square matrix are linearly independent.
- 16. Prove that constant term of the characteristic polynomial of a matrix A is $(-1)^n |A|$ where n is the order of A.
- 17. Check whether the function $T : P_2 \rightarrow \mathbb{R}^3$ defined by $T(a + bx + cx^2) = (c - a, a + b, b + c)$ is a linear transformation or not.
- 18. Find the null space, range space and their dimensions of the linear transformation T : R³ → P₂ defined by T (a, b, c) = (a + c) + (b - a) x + (b + c) x².
- 19. Let T be a linear operator defined on \mathbb{R}^3 such that $T(e_1) = e_1 + e_2$, $T(e_2) = e_2 + e_3$, $T(e_3) = e_1 + e_2 + e_3$ where $\{e_1, e_2, e_3\}$ is a standard basis for \mathbb{R}^3 . Is T non-

singular ? If so, find T⁻¹.

K16U 0203

20. Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 6 \end{bmatrix}$$
.

(Weightage 7x2=14)

Answer any three from the following :

(Weightage 3 each)

21. Let $U = \left\{ \left(x_1, x_2, x_3 \right) \in \mathbb{R}^3 / x_1 + x_2 - 2x_3 = 0 \right\}$

and $W = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 3x_2 + 2x_3 = 0 \}$ be subspaces of \mathbb{R}^3 . Find a basis and dimension of U, W and $U \cap W$.

22. Using the row reduction method, check whether the given matrix

 $A = \begin{bmatrix} -1 & 1 & 1 \\ 3 & 1 & -1 \\ 2 & 2 & 1 \end{bmatrix}$ is invertible or not. If it is invertible, find A⁻¹.

23. Using Cayley-Hamilton theorem, find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$.

24. Diagonalise the matrix
$$A = \begin{vmatrix} -2 & 4 & -2 \\ 4 & 4 & -4 \\ -2 & -4 & 5 \end{vmatrix}$$
.

25. What do you mean by a matrix related to linear transformation ? Let T : P₂ → R³ be a linear transformation defined by T (a + bx + cx²) = (a, c - b, c - a). Find the matrix representation of T with respect to the ordered basis B₁ = {1, x, x²} of P₂ and B₂ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R³. (Weightage 3×3=9)

-3-