K17U 0241

Reg.	No). :	
Name	e :		

VI Semester B.Sc. Degree (CCSS – Supple./Improv.) Examination, May 2017 CORE COURSE IN MATHEMATICS 6B10 MAT : Analysis and Topology (2009-2013 Admns.)

Time : 3 Hours

Weightage: 30

- 1. Fill in the blanks :
 - a) $\int_{1}^{5} \frac{t}{1+t^2} dt =$ ____
 - b) If F_1 and F_2 are antiderivatives of $f: I \rightarrow R$ on an interval I, $F_1 F_2 =$
 - c) Let I = [0, 1] and let f : I \rightarrow R be continuous. If $\int_{0}^{x} f = \int_{x}^{1} f$ for all $x \in I$ then f(x) =______
 - d) If g(x) = x on [0, 1] and $P_n = \left(0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right)$ then $\lim_{n \to \infty} \left(U(P_n, g) - L(P_n, g)\right) = \underline{\qquad} \qquad (Wt. : 1)$

Answer any 6 from the following 9 questions (Wt. 1 each) :

2. Let X be a non-empty set and define a real valued function d on X as follows For any ordered pair (x, y) of elements of X

d(x, y) = 1 if $x \neq y$

= 0 if x = y

Show that d is a metric on X.

- 3. If X is a metric space and x, $y \in X$, show that \exists disjoint open spheres centred at x and y.
- Is the following statement true ?
 "Intersection of any collection of open sets is open". Justify your claim.

K17U 0241

- If T₁ and T₂ are 2 topologies on a non-empty set X, show that T₁∩T₂ is also a topology on X.
- If X and Y are topological spaces and f: X → Y is a one-to-one onto continuous function, then f is a homomorphism. Prove or disprove.
- 7. Show that a constant function is Riemann integrable.
- 8. Let I = [a, b] and f : I \rightarrow R be integrable on I. If f(x) ≥ 0 for all x \in I, is it true that $\int_{a}^{b} f \ge 0$? Justify.
- 9. State Mean Value theorem for integrals. If f is continuous on I = [a, b], show that $\exists c \in I$ such that $\int_{a}^{b} f = f(c)(b a)$.
- 10. If $\sum a_n x^n$ and $\sum b_n x^n$ converge on some interval (- r, r), r > 0 to the same function f, then prove that $a_n = b_n$ for all $n \in \mathbb{N}$. (Wt : 1×6=6)

Answer any 7 from the following 10 questions (Weightage 2 each) :

- 11. Let X be a metric space. Show that a subset G of X is open iff it is a union of open spheres.
- Let Y be a subspace of a metric space and let A be a subset of the metric space Y. Show that A is open as a subset of Y, iff it is the intersection with Y of a set which is open in X.
- 13. Let I = [a, b] and $f: I \rightarrow R$ be monotone on I. Show that f is integrable on I.
- 14. Show that a Cauchy sequence is convergent iff it has a convergent subsequence.
- 15. Let X be a topological space, Y a metric space and A a subspace of X. If f is a continuous mapping of A into Y, show that f can be extended in atmost one way to a continuous mapping of A into Y.
- 16. Show that any intersection of closed sets is closed. Hence show that $\overline{A} = \overline{A}$.
- 17. Let $f: I \rightarrow R$ be bounded, P a partition of I and Q a refinement of P. Show that i) $L(P, f) \leq L(Q, f)$ ii) $U(Q, f) \leq U(P, f)$ (I = [a, b])

- 18. Show that a sequence (f_n) of bounded functions on A \subseteq R converges uniformly on A to f iff $||f_n f||_A \rightarrow 0$.
- 19. Let (f_n) be a sequence of functions that are integrable on [a, b] and suppose (f_n) converges uniformly on [a, b] to f, show that f is integrable on [a, b] and

$$\int_a^b f(x) dx = \lim \int_a^b f_n(x) dx$$

20. Check for uniform convergence of the sequence $\{f_n\}$ of functions given by

$$f_n(x) = \frac{1}{n(1+x^2)}, x \in IR$$
. (Wt: 2×7=14)

Answer any 3 from the following 5 questions (Wt. 3 each) :

- 21. State and prove Cauchy's criterion for uniform convergence.
- 22. Let R be the set of all real numbers. Define d_1 and d_2 on R by $d_1(x, y) = |x y|$ and

$$d_2(x, y) = \frac{|x - y|}{1 + |x - y|}$$
. Show that d_1 and d_2 are metrics.

23. Prove the following :

"If $\{f_n\}$ is a sequence of continuous functions on a set $A \subseteq R$ converging uniformly on A to a function $f : A \rightarrow R$, then f is continuous.

Is the statement true if we replace uniform convergence by pointwise convergence ?

24. Let A, B be two subsets of a metric space V. Prove the following :

a) int (A) \cup int (B) \subseteq int (A \cup B) b) int (A) \cap int(B)= int (A \cap B)

Give an example of sets A and B such that $int(A) \cup int(B) \neq int(A \cup B)$.

- 25. Let X be a non-empty set and define an operation C on the collection of subsets of X satisfying the following
 - i) $\mathcal{C}(\phi) = \phi$ ii) $A \subset \mathcal{C}(A)$ where $A \subseteq X$

iii) $\mathcal{C}(\mathcal{C}(A)) = \mathcal{C}(A)$ where $A \subseteq X$

iv) $\mathcal{C}(A \cup B) = \mathcal{C}(A) \cup \mathcal{C}(B), A, B \subseteq X$

Let $\tau = \{B \subset X; \ \mathcal{C}(X \setminus B) = X \setminus B\}$

Show that τ is a topology on X. With this topology, show that for any $A \subset X$, $\overline{A} = \mathcal{C}(A)$ (Wt : 3×3=9)