

K18U 0122

Reg.	No.	:	
Name			

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Imp.) Examination, May 2018 CORE COURSE IN MATHEMATICS 6B11 MAT : Numerical Methods and Partial Differential Equations (2014 Admn. Onwards)

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. If the Newton-Raphson method is used on $f(x) = x^3 x + 1$ starting with $x_0 = 1$, what will x_1 be ?
- 2. Find an interval of unit length which contains the smallest positive root of the equation $x^3 5x 1 = 0$.
- 3. The divided differences are symmetric with respect to their arguments. True or false ?
- 4. Give the two-dimensional Poisson equation.

SECTION-B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Perform three iterations of the bisection method to obtain a real root of the equation $x^3 6x 4 = 0$.
- 6. Find the root of the equation $2x \log_{10} x = 7$ which lies between 3.5 and 4 by Regulafalsi method.
- Using Newton-Raphson method, derive formula to find N^{1/q}, N > 0, q integer and hence find (18)^{1/3}

P.T.O.

 $(1 \times 4 = 4)$

8. Find the Lagrange interpolating polynomial that fits the following data.

x 0 1 2

f(x) 2 1 12

9. Using divided differences, show that the data

x -3 -2 -1 1 2 3

f(x) 18 12 8 6 8 12

represents a second degree polynomial. Hence determine the interpolating polynomial.

10. The following data represents e^{-x}.

x -1 -0.5 0 1

f(x) 2.7183 1.6487 1 0.3679

Obtain an approximate value of f''(-1) using the method $f''(x_0) = [f_0 - 2f_1 + f_2] / h^2$ with (i) h = 1 and (ii) h = 1/2.

- 11. Find the solution of the initial value problem y' = x y, y(0) = 1, by performing three iterations of the Picard's method.
- 12. Show that the wave equation $u_{tt} = c^2 u_{xx}$ is hyperbolic.
- 13. Find solution u(x, y) by separating variables : $xu_{xy} + 2yu = 0$.
- 14. Solve the system $u_{xx} = 0$, $u_{yy} = 0$.

SECTION-C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. The equation $x^3 5x 1 = 0$ has a root in the interval (-1, 0). Write this equation in an equivalent form $x = \phi(x)$ so that the general iteration method $x_{k+1} = \phi(x_k)$ is convergent. Hence, perform three iterations of this method starting with $x_0 = -0.5$.
- 16. For the data,

x 1 1.1 1.2 1.3 1.4 f(x) 7.0 8.093 9.384 10.891 12.632 find an approximation of f(1.35) and f(1.25). $(2 \times 8 = 16)$

K18U 0122

 $(4 \times 4 = 16)$

- 17. Evaluate $\int_0^2 \frac{dx}{x^2 + 2x + 10}$ using Simpson's rule with n = 2, 4.
- 18. Obtain the approximate value of y(1.3) for the initial value problem $y' = -2xy^2$, y(1) = 1 using Taylor series second order method with step size h = 0.1.
- 19. Find the deflection u(x, t) of the string of length $L = \pi$ and $c^2 = 1$ for zero initial displacement and triangular initial velocity

 $u_1(x, 0) = \begin{cases} 0.01x & \text{if } 0 \le x \le \pi/2 \\ 0.01(\pi - x) & \text{if } \pi/2 \le x \le \pi \end{cases}$

20. Obtain the Laplacian in Polar Coordinates.

SECTION-D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

21. The following table of the function $f(x) = e^{-x}$ is given.

х	0.2	0.3	0.4	0.5	0.6	0.7	0.8
f(x)	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493

a) Using Gauss backward central difference formula compute f(0.45).

b) Using Stirling central difference formula compute f(0.55).

- 22. Evaluate the integral $\int_0^{\pi/2} e^{-x} \cos x dx$ using the trapezoidal rule with (i) h = $\pi/2$ and (ii) $h = \pi/4$.
- 23. Solve the initial value problem y' = x(y x), y(2) = 3 in the interval [2, 2.4] using the classical Runge-Kutta fourth order method with step size h = 0.2.
- 24. Derive the Fourier series solution to the heat equation. $(6 \times 2 = 12)$