

MATHEMATICS

MAT3C14 : Advanced Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Define uniform bounded functions and give an example.
- 2. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 3. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}$. For what values of x does the series converge absolutely ?

- 4. Show that $\lim_{x\to\infty} x^n e^{-x} = 0$ for every n.
- 5. Show that $\log \Gamma$ is convex on $(0, \infty)$.
- 6. Find $\lim_{n \to \infty} \frac{n}{\log n} \left[n^{\frac{1}{n}} 1 \right]$.

PART - B

Answer⁻⁴ questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Compare pointwise convergence and uniform convergence.
 - b) If $\{f_n\}$ is a sequence of continuous function on E and if $f_n \rightarrow f$ uniformly on E, then show that f is continuous on E.

P.T.O.

 $(4 \times 4 = 16)$

- 8. a) Suppose K is compact, and
 - i) {f_n} is a sequence of continuous functions on K.
 - ii) {f_n} converges pointwise to a continuous function f on K.

iii) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K \ I, \ n = 1, 2, ...$

Then show that $f_n \rightarrow f$ uniformly on K.

- b) Let α be monotonically increasing on [a, b]. Suppose $f_n \mathcal{R}(\alpha)$ on [a, b], for n = 1, 2, ... and suppose $f_n \rightarrow f$ uniformly on [a, b] then prove that $f \in \mathcal{R}(\alpha)$ on [a, b] and $\int_a^b f \, d\alpha = \lim_{n \to \infty} \int_a^b f_n \, d\alpha$.
- 9. a) Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b] then show that $\{f_n\}$ converges uniformly on [a, b], to a function f, and f' (x) = $\lim_{n \to \infty} f'_n(x)$ (a $\leq x \leq b$).
 - b) Define algebra and give an example.

Unit – II

- 10. a) State and prove Taylor's theorem.
 - b) Suppose $a_0, \dots a_n$ are complex numbers $n \ge 1$, $a_n \ne 0$, $P(z) = \sum_{k=0}^{n} a_k z^k$. Then prove that P(z) = 0 for some complex number z.
- 11. a) Define orthogonal system of functions.
 - b) If $\{\phi_n\}$ be orthonormal on [a, b] and if $f(x) \sim \sum_{n=1}^{\infty} c_n \phi_n(x)$, then prove that $\sum_{n=1}^{\infty} |c_n|^2 \leq \int_a^b |f(x)|^2 dx$.
 - c) If f(x) = 0 for all x in some segment J, then prove that $\lim S_N(f; x) = 0$ for every $x \in J$.
- 12. a) Define beta function.
 - b) State and prove Stirling's formula.

Unit – III

- 13. a) Show that a linear operator A on a finite-dimensional vector space X is one-to-one if and only if the range of A is all of X.
 - b) If $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and c is a scalar, then prove that $||A + B|| \le ||A|| + ||B||$, ||cA|| = |c|||A||. With the distance between A and B is defined as ||A - B||, prove that $L(\mathbb{R}^n, \mathbb{R}^m)$ is a metric space.
 - c) Let Ω be the set of all invertible linear operators on \mathbb{R}^n . Then prove that Ω is an open subset of $L(\mathbb{R}^n)$ and the mapping $A \to A^{-1}$ is continuous on Ω .
- 14. a) Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m and f is differentiable at a point $x \in E$. Then prove that the partial derivatives $(D_j f_j)(x)$ exist and $f'(x)e_j = \sum_{i=1}^{\infty} (D_j f_i)(x)u_i \ (1 \le j \le n)$, where $\{e_1, \dots e_n\}$ and $\{u_1, \dots, u_m\}$ are the standard bases of \mathbb{R}^n and \mathbb{R}^m .
 - b) Suppose f maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , f is differentiable in E and there is a real number M such that $\|f'(x)\| \le M$ for every $x \in E$. Then prove that $|f(b) f(a)| \le M |b a|$ for all $a \in E$, $b \in E$.

15. State and prove inverse function theorem.

 $(4 \times 16 = 64)$