K21P 0560

Reg. No. :

Name :

First Semester M.Sc. Degree (CBSS + Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, October 2020 (2017 Admission Onwards) MATHEMATICS MAT1C04 : Basic Topology

LIBRAR

Time : 3 Hours

Max. Marks: 80

Instructions : 1) Answer any four questions from Part – A. Each question carries 4 marks.

> Answer any four questions from Part – B. Without omitting any Unit. Each question carries 16 marks.

PART - A

- 1. Show that the lower limit topology on \mathbb{R} is not the usual topology on \mathbb{R} .
- 2. Let X be a set and let d be the discrete metric on X. Show that (X, d) is complete.
- 3. Let A be a subset of the topological space (X, τ). Show that $\tau_A = \{U \cap A : U \in \tau\}$ is a topology on A.
- 4. Let (X_1, τ_1) and (X_2, τ_2) be second countable spaces and let τ be the product topology of $X = X_1 \times X_2$. Show that (X, τ) is second countable.
- Let X be a set with more than one member and let τ be the discrete topology on X. Is (X, τ) connected ? Is it totally disconnected ? Why ?
- Prove that the closed unit interval has the fixed point property.

PART – B

Unit – I

- a) Define a basis for a topology. State and prove a necessary and sufficient condition for a subset of P(X) to be a basis for a topology on X.

 - c) Prove that every metric space is first countable.

- a) Define a separable space and prove that every second countable space is separable.
 - b) Give an example with justification of a separable space that is not second countable.
 - c) Prove that every separable metric space is second countable.
- 9. a) State and prove Baire category theorem.
 - b) Let (X, τ) be a first countable space. Let (X_n) be a sequence in X and x ∈ X. Prove that (X_n) clusters at x if and only if there is a subsequence of (X_n) that converges to x.
 - c) Prove that metrizability is a topological property.

Unit – II

- a) If τ is the usual topology on R, find the subspace topology on the subset of all integers.
 - b) Let (A, τ_A) be a subspace of a topological space (X, τ) and let B be a subset of A. Prove that the closure of B in (A, τ_A) is $A \cap \overline{B}$, where \overline{B} is the closure of B in X.
 - c) State and prove that pasting lemma.
- 11. a) Define the product space of two topological spaces (X_1, τ_1) and (X_2, τ_2) and show that $\bigotimes^{V} = \{\pi_1^{-1}(U) : U \in \tau_1\} \cup \{\pi_2^{-1}(V) : V \in \tau_2\}$ is a subbasis for the product topology on $X_1 \times X_2$.
 - b) Let $X = \{1, 2, 3\}$, $Y = \{4, 5\}$, $\tau = \{\phi, \{1\}, \{1, 2\}, X\}$, $U = \{\phi, \{4\}, Y\}$. Find a subbasis S for the product topology on $X \times Y$. Also find the basis \mathscr{B} that S generates.
 - c) Let (X_1, d_1) and (X_2, d_2) be metric spaces, for each i = 1, 2, let τ_1 be the topology on X₁ generated by d₁. Prove that the product topology on $X = X_1 \times X_2$ is same as the topology on X generated by the product metric.
- 12. a) Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be a family of topological spaces and for each $\alpha \in \Lambda$, let $(A_{\alpha}, \tau_{A_{\alpha}})$ be a subspace of $(X_{\alpha}, \tau_{\alpha})$. Prove that the product topology on $\prod_{\alpha \in \Lambda} A_{\alpha}$ is same as the subspace topology on $\prod_{\alpha \in \Lambda} A_{\alpha}$ determined by the product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$.

-3-

b) Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of first countable spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that the product space (X, τ) is first countable if and only if τ_{α} is the trivial topology for all but a countable number of α .

Unit – III

- a) Prove that a topological space (X, τ) is connected if and only if it cannot be expressed as the union of two non-empty sets that are separated in X.
 - b) Let τ be the usual topology on \mathbb{R} . Show that (\mathbb{R}, τ) is connected.
 - c) Prove that fixed point property is a topological invariant.
- 14. a) Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be a collection of topological spaces and suppose that

for each $\alpha \in \Lambda$. $X_2 \neq \phi$. Let $X = \prod_{\alpha \in \Lambda} X_\alpha$. Prove that the product space (X, τ)

is connected if and only if for each $\alpha \in \Lambda$, $(X_{\alpha}, \tau_{\alpha})$ is connected.

- b) Define a pathwise connected space and show that the topologist's sine curve is not pathwise connected.
- a) Define a locally pathwise connected space. Prove that a topological space is locally pathwise connected if and only if each path component of each open set is open.
 - b) Define (i) totally disconnected space, (ii) 0-dimensional space (iii) T_o space.
 - c) Prove that every 0-dimensional space is totally disconnected.