

K20P 1190

III Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, October 2020 (2017 Admission Onwards) MATHEMATICS MAT 3E 01 : Graph Theory

Time : 3 Hours

Max. Marks : 80

PART – A

- I. Answer any 4 questions. Each question carries 4 marks :
 - Prove that a set S ⊆ V is an independent set of G if and only if V\S is a covering of G.
 - 2) Define k-vertex colouring and chromatic number.
 - 3) Every simple planar graph has a vertex of degree at most 5.
 - A graph G is embeddable in the plane if and only if it is embeddable on the sphere.
 - Let M be a matching and K be a covering such that |M| = |K|. Then prove that M is a maximum matching and K is a minimum covering.
 - Prove that Let / be a feasible vertex labelling of G. If G, contains a perfect matching M*, then M* is an optimal matching of G. (4×4=16)

PART - B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks :

Unit – I

- II. a) Prove that if $\delta > 0$, $\alpha' + \beta' = v$.
 - b) If G is a connected simple graph and is neither an odd cycle nor a complete graph, then prove that X ≤ Δ.

P.T.O.

K20P 1190

- III. a) Prove that $r(k, k) \ge 2^{k/2}$.
 - b) If G is 4 chromatic, then prove that G contains a subdivision of K₄.

IV.a) Prove that
$$r(k, l) \leq \binom{k+l-2}{k-1}$$
.

- b) If the odd cycles in G are pairwise intersecting, then prove that $\chi(G) \leq 5$.
- c) For any positive integer k, prove that there exists a k chromatic graph containing no triangle.

Unit – II

- V. a) Let v be a vertex of a planar graph G. Prove that G can be embedded in the plane in such a way that v is on the exterior face of the embedding.
 - b) Let G be a connected graph that is not an odd cycle. Then prove that G has a 2 – edge colouring in which both colours are represented at each vertex of degree at least two.
 - c) If G is nonplanar, then prove that at least one of H, and H, is also nonplanar.
- VI. a) State and prove Euler's formula.
 - b) Prove that every planar graph is 5 vertex-colourable.
- VII. Prove that a graph is planar if and only if it contains no subdivision of K₅ or K₃₃.

Unit – III

- VIII.a) Prove that a matching M in G is a maximum matching if and only if G contains no M augmenting path.
 - b) State and prove the Max-Flow, Min-cut theorem.
- IX. Prove that G has a perfect matching if and only if $O(G S) \le |S|$ for all $S \subset V$.
- X. State and prove Menger's theorem.

(4×16=64)