K24P 4043

Reg. No. :

I Semester M.Sc. Degree (CBSS – Supplementary) Examination, October 2024 (2021 and 2022 Admissions) MATHEMATICS MAT1C04 : Basic Topology

Time : 3 Hours

Max. Marks : 80

Answer four questions from this part. Each question carries 4 marks.

- Let (X, d) be a metric space, let x ∈ X and let ε > 0. Prove that A = {y ∈ X : d(x, y) ≤ ε} is a closed subset of X.
- Prove that every second countable space is separable. Is the converse true ? Justify your answer with an example.

PART

- Let (A, 𝒯_A) be a subspace of a topological space (X, 𝒯). Prove that a subset C of A is closed in (A, 𝒯_A) if and only if there is a closed subset D of (X, 𝒴) such that C = A ∩ D.
- 4. Let (X_1, \mathscr{T}_1) and (X_2, \mathscr{T}_2) be topological spaces, and let $(X_1 \times X_2, \mathscr{T})$ be the product space. Prove that the projection maps are continuous. Also show that the product topology is the smallest topology for which both projections are continuous.
- A topological space (X, 𝒴) is connected if and only if no nonempty proper subset of X is both open and closed.
- · 6. Define Cantor set.

 $(4 \times 4 = 16)$

P.T.O.

K24P 4043

PART – B

Answer four questions from this part without omitting any Unit. Each question carries 16 marks.

Unit – ľ

- 7. a) Let $\{\mathscr{T}_{\alpha} : \alpha \in \Lambda\}$ be a collection of topologies on a set X. Prove that $\cap \{\mathscr{T}_{\alpha} : \alpha \in \Lambda\}$ is a topology on X.
 - b) Let X be a set and let \mathscr{S} be a collection of subsets of X such that $X = \bigcup \{S : S \in \mathscr{S}\}$. Prove that there is a unique topology \mathscr{T} on X such that \mathscr{S} is a subbasis for \mathscr{T} .
 - c) Let X = {1, 2, 3, 4, 5} and S = {{1}, {1, 2, 3}, {2, 3, 4}, {3, 5}}. Prove that S is a subbasis for a topology on X. Also find S.
- 8. a) Let A and B be subsets of a topological space (X, S). Prove that :
 - i) A is open if and only if A = int A.
 - ii) int (A) \subseteq int (B) whenever A \subseteq B.
 - iii) int $(A \cap B) = int (A) \cap int(B)$.
 - iv) int (A) \cup int (B) \subseteq int (A \cup B).
 - b) Let n ∈ N and 𝒴 is the usual topology on ℝⁿ. Prove that (ℝⁿ, 𝒴) is second countable.
- 9. a) Let (X, \mathscr{T}) be a topological space, Let A $\subset X$ and let $x \in X$. Prove that
 - i) if there is a sequence of points of A that converges to x, then $x \in A$.
 - ii) if (X, 𝔅) is first countable and x ∈ A, then there is a sequence of points of A that converges to x.
 - b) Let (X, d) be a complete metric space and let A be a subset of X with subspace metric ρ = d|_(A × A). Prove that (A, ρ) is complete if and only if A is a closed subset of X.
 - c) Let (X, \mathscr{T}) and (Y, \mathscr{U}) be topological spaces and let $f : X \to Y$. Suppose (X, \mathscr{T}) is first countable and for each $x \in X$ and each sequence $\langle x_n \rangle$ such that $\langle x_n \rangle \to x$, the sequence $\langle f(x_n) \rangle \to f(x)$. Then prove that f is continuous.

Unit – II

-3-

- a) Prove that the topological properties Hausdorff and metrizability are hereditary.
 - b) Let {(X_α, 𝒯_α) : α ∈ Λ} be an indexed family of first countable spaces and let X = ∏_{α∈Λ} X_α. Prove that (X, 𝒯) is first countable if and only if 𝒯_α is the trivial topology for all but a countable number of α.
- 11. a) Give an example to show that separability is not hereditary.
 - b) State and prove Pasting lemma.
 - c) Let (X_1, \mathscr{T}_1) and (X_2, \mathscr{T}_2) be topological spaces, and for i = 1, 2 let \mathscr{B}_i be bases for \mathscr{T}_i . Then prove that $\mathscr{B} = \{U \times V : U \in \mathscr{B}_1 \text{ and } V \in \mathscr{B}_2\}$ is a basis for the product topology \mathscr{T} on $X_1 \times X_2$.
- 12. a) Let {(X_α, 𝒯_α) : α ∈ Λ} be an indexed family of topological spaces, and for each α ∈ Λ, let (A_α, 𝒯_{Aα}) be a subspace of (X_α, 𝒯_α). Then prove that the product topology on Π_{α∈Λ} A_α is the same as the subspace topology on Π_{α∈Λ} A_α is determined by the product topology on Π_{α∈Λ} X_α.
 - b) Let $\{(Y_{\alpha}, \mathscr{Q}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of topological spaces. Let \mathscr{Q} be the product topology on $Y = \prod_{\alpha \in \Lambda} |Y_{\alpha}|$, let (X, \mathscr{T}) be a topological space, and let $f : X \to Y$ be a function. Prove that f is continuous if and only if π_{α} of is continuous for each $\alpha \in \Lambda$.

Unit – III

- 13. a) Let \mathscr{T} be the usual topology on \mathbb{R} . Prove that $(\mathbb{R}, \mathscr{T})$ is connected.
 - b) State and prove intermediate value theorem.
 - c) Prove that the Cantor set is totally disconnected.

DonBosco

- 14. a) Prove that the fixed point property is a topological invariant.
 - b) Prove that the topologist's sine curve is not pathwise connected.
- a) Let {(A_α, 𝒴_{Aα}) : α ∈ Λ} be a collection of connected subspaces of a topological space (X, 𝒴) and let A = ∪_{α ∈ Λ} A_α. Then prove that
 - i) If $\cap_{\alpha \in \Lambda} A_{\alpha} \neq \emptyset$ then (A, \mathscr{T}_A) is connected.
 - ii) If $\Lambda = \mathbb{N}$ and $A_n \cap A_{n+1} \neq \emptyset$ for each $n \in \mathbb{N}$, then (A, \mathcal{T}_A) is connected.
 - b) Prove that a topological space (X, S) is locally connected if and only if each component of each open set is open.
 - c) Prove that every 0-dimensional To space is totally disconnected. (4×16=64)