K22U 0418

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS – OBE – Regular) Examination, April 2022 (2019 Admission) CORE COURSE IN MATHEMATICS Discipline Specific Elective 6B14B MAT : Operations Research

ATS AND SCI

LIBRARY

Time : 3 Hours

Max. Marks: 48

PART – A

Answer any four questions. Each question carries one mark.

05C0 A

- 1. Give an example of a simplex in 3-dimension.
- 2. Write the standard form of a LPP.
- 3. Write the necessary and sufficient condition for the existence of a feasible solution to the general transportation problem.
- 4. What is no passing rule in a sequencing problem ?
- 5. What is saddle point in game theory ?

PART – B

Answer any eight questions. Each question carries two marks.

6. Show that the function f(x) = |x| is a convex function on \mathbb{R} .

- 7. Define slack and surplus variable in LPP.
- 8. Write down the duel of the LPP.

Maximise $Z = x_1 + 6x_2$

Subject to $x_1 + x_2 \ge 2$

$$x_1 + 0x_2 \ge 0$$

 $x_1 \ge 0, x_2 \ge 0$

K22U 0418

-2-

- 9. Give the general form of a transportation table.
- 10. Write the steps in Vogel's Approximation method of finding the solution of a transportation problem.
- 11. Give an example of an unbalanced transportation problem.
- 12. Write any two basic assumptions of sequencing problem.
- 13. How will you solve minimization problem using assignment techniques ?
- 14. Write optimal sequence algorithm of processing n-jobs through 2 machines.
- 15. State the maximini-minimaxi principle.
- State principle of dominance in game theory.

PART – C

Answer any four questions. Each question carries four marks.

17. Write the following quadratic form in the form X^TAX.

a)
$$x_1^2 + 8x_1x_2 + 16x_2^2 - 3x_3^2$$

b) $2x_1^2 - 6x_1x_2 + 2x_1x_3 + 2x_2^2 + 6x_2$.

18. Consider the following problem faced by a production planner in a soft drink plant. He has two bottling machine A and B. A is designed for 18 ounce bottles and B is designed for 16 ounce bottles. However, each can be used on both type with some loss of efficiency. The following data is available.

Machine	8 ounce bottle	16 ounce bottle			
А	100/minute	40/minute			
В	60/minute	75/minute			

Both machine can be run 8 hours per day, 5 days per week. Profit on a 8-ounce bottle is 25 paise and on a 16-ounce bottle is 35 paise. Weekly production of the drink cannot exceed 30,00,000 ounce and the market can absorb 25,000 8-ounce bottles and 7000 16-ounce bottles per week. The planner wishes to maximize his profit subject, of course, to all the production and marketing restrictions. Formulate this as a LPP.

K22U 0418

19. Solve the following LPP graphically.

Maximize $Z = 3x_1 + 5x_2$, subject to $x_1 + 2x_2 \le 2000$, $x_1 + x_2 \le 1500$, $x_2 \le 600$, $x_1 \ge 0$ and $x_2 \ge 0$.

20. Solve the following transportation problem by north west corner rule.

Destinations

Origins	D ₁	D ₂	D3	Supply
0,	2	7	4	5
0,	З	3	1	8
0	5	.4	7	7
O4	1	6	2	14
Demand	7	9	18	-

21. Solve the following transportation problem by Vogel's approximation method.

	C	estin	ations	S	3
Sources	1	2	3	4	Supply
A	21	16	15	З	11
В	17	18	14	23	13
С	32	27	18	41	19
Demand	6	10	12	15	

22. Solve the following minimal assignment problem.

Man	1	Ш	Ш	IV
1	2	3	4	5
2	4	5	6	7
3	7	8	9	8
4	3	5	8	4

23. Solve the game whose pay off matrix is given by

-	Β,	B_2	B_3	
A,	1	7	2	1
Α2	6	2	7	
A ₃	5	1	6	

K22U 0418

PART – D

Answer any two questions. Each question carries 6 marks.

24. Solve the following LPP by simplex method :

Maximize $Z = x_1 + x_2$

Subject to $2x_1 + x_2 \ge 4$

$$x_1 + 7x_2 \ge 0$$

$$x_1, x_2 \ge 0.$$

25. Find the starting solution to the following transportation problem by Vogel's approximation method, also obtain the optimum solution.

	D ₁	D_2	D_3	D_4	Supply
S,	3	7	6	4	5
S ₂	2	4	3	2	2
S3	4	3	8	5	3
Demand	3	3	2	2	

26. Determine the optimal sequence of jobs that minimize the total elapsed time based on the following information processing time on machine is given in hours and passing is not allowed.

Job	Α	В	С	D	Е	F	G
$Machine M_1$	3	8	7	4	9	8	7
$Machine M_2$	4	3	2	5	1	4	3
Machine M	6	7	5	11	5	6	12

27. Solve the following game problem by graphical method.