

K21P 0557

Reg. No.	:	
----------	---	--

Name :

First Semester M.Sc. Degree (CBSS-Reg./Suppl. (Including Mercy Chance) /Imp.) Examination, October 2020 (2017 Admission Onwards) MATHEMATICS MAT 1C01 – Basic Abstract Algebra

IS ANU SC

LIBRAR

SCO NY

Time : 3 Hours

Max. Marks: 80

PART – A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Define normal series. Give an example.
- 2. Show that every group of order 45 has a normal subgroup of order 9.
- 3. If R is a ring with unity 1, then prove that the map $\phi: \mathbb{Z} \to R$ given by $\phi(n) = n.1$ is a homomorphism.
- 4. Find the sum and the product of the polynomials f (x) = $2x^2 4x + 2$ and g (x) = 4x 5 in $\mathbb{Z}_5[x]$.
- 5. Write all abelian groups up to isomorphism of order 24.
- 6. Define isomorphic normal series. Give an example.

PART – B

Answer any four questions from Part – B. Without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Prove that the group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} if and only if m and n are relatively prime.
 - b) Let G be an abelian group. Let H be the subset consisting of the identity e together with all elements of G of order 2. Show that H is a subgroup of G.

K21P 0557

- 8. a) Let X be a G-set. Then prove that $|Gx| = (G : G_{v})$
 - b) Show that there are no simple groups of order 255.
- 9. a) If H and K are subgroups of a group G, then prove that $|HK| = \frac{(|H|)(|K|)}{|H \cap K|}$.
 - b) Show that no group of order 30 is simple.

Unit – II

- 10. a) Prove that any two fields of quotients of an integral domain D are isomorphic.
 - b) Describe the field of quotients of the integral subdomain $D = \{n + mi \mid n, m \in \mathbb{Z}\}$ of \mathbb{C} .
- 11. a) If N is a normal sub group of G and H is any subgroup of G, then prove that H v N = HN = NH. Also, if H is normal subgroup of G, then prove that HN is a normal subgroup of G.
 - b) Show that the center of a group G is a normal subgroup of G. Find the ascending central series of D₄.
- 12. a) Prove that every finitely generated abelian group is isomorphic to a group of the form $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times ... \times \mathbb{Z}_{m_r} \times \mathbb{Z} \times ... \times \mathbb{Z}$ where m_i divides m_{i+1} for i = 1, ..., r-1.
 - b) Show that a free abelian group contains no nonzero elements of finite order.

Unit – III

- 13. a) State and prove division algorithm for F[x].
 - b) Show that the polynomial $f(x) = x^4 2x^2 + 8x + 1$ is irreducible over \mathbb{Q} .
- a) Let R be a commutative ring with unity. Then prove that if M is a maximal ideal of R if and only if R/M is a field.
 - b) Show that a factor ring of a field is either the trivial ring of one element or is isomorphic to the field.
- a) Is x³ + 2x + 3 an irreducible polynomial of Z₅[x] ? Why ? Express it as product of irreducible factors.
 - b) Prove that an ideal $(p(x)) \neq \{0\}$ of F [x] is maximal if and only if p(x) is irreducible.