

K23P 3297

Reg. No. :

Name :

First Semester M.Sc. Degree (CBSS – Supple. (One Time Mercy Chance)/ Imp.) Examination, October 2023 (2017 to 2022 Admissions) MATHEMATICS MAT1C03 : Real Analysis

Time : 3 Hours

Max. Marks : 80

PART -

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Define a neighborhood of a point p. Prove that every neighborhood is an open set.
- If E is an infinite subset of a compact set K, then prove that E has a limit point in K.
- 3. When can you say that a function f is said to be differentiable at a point x ? Let f be defined on [a, b]. If f is differentiable at a point x ∈ [a, b], then prove that f is continuous at x.
- 4. Suppose f is differentiable in (a, b). If $f'(x) \ge 0$ for all $x \in (a, b)$, then prove that f is monotonically increasing.
- 5. Give an example of a continuous function, which is not of bounded variation. Justify.
- Let f: [a, b] → Rⁿ and g: [c, d] → Rⁿ be two paths in Rⁿ, each of which is one to one on its domain. Then prove that f and g are equivalent if and only if they have the same graph.

P.T.O.

K23P 3297

-2-

PART – B

Answer any four questions from this part without omitting any Unit. Each question carries 16 marks. (4×16=64)

UNIT - I

- 7. a) Let A be a countable set, and let B_n be the set of all n-tuples (a₁, a₂, ..., a_n), where a_k ∈ A (k = 1, 2, ..., n) and the elements a₁, a₂, ..., a_n need not be distinct. Then prove that B_n is countable.
 - b) Let A be the set of all sequences whose elements are the digits 0 and 1. Then prove that this set A is uncountable.
 - c) Prove the following :
 - i) For any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open.
 - ii) For any collection $\{F_{\alpha}\}$ of closed sets $cap_{\alpha}F_{\alpha}$ is closed.
 - iii) For any finite collection $G_1, G_2, ..., G_n$ of open sets, $\bigcap_{i=1}^n G_i$ is open.
 - iv) For any finite collection $F_1, F_2, ..., F_n$ of closed sets, $\bigcup_{i=1}^n F_i$ is closed.
- 8. a) Prove that every k-cell is compact.
 - b) Let P be a non-empty perfect set in R^k. Then prove that P is uncountable.
- a) Define uniformly continuous mapping. Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on X.
 - b) Let f be monotonic on (a, b). Then prove that the set of points of (a, b) at which f is discontinuous is at most countable.

UNIT – II

- 10. a) When can you say that a real function f has a local maximum ? Let f be defined on [a, b]; if f has a local maximum at a point x ∈ (a, b), and if f'(x) exists, then prove that f'(x) = 0.
 - b) State and prove the generalized mean value theorem.
 - c) Give an example to show that the mean value theorem fails to be true for complex-valued functions. Justify.

K23P 3297

- 11. a) Define the refinement of a partition P. If P* is a refinement of P, then prove that L(P, f, α) \leq L(P^{*}, f, α) and U(P^{*}, f, α) \leq U(P, f, α).
 - b) Prove that $\int_{-b}^{b} f d\alpha \leq \int_{-b}^{-b} f d\alpha$.

12. a) If $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a, b], then prove that a) fg $\in R(\alpha)$

b) $|f| \in R(\alpha)$ and $\left|\int_{\alpha}^{b} f d\alpha\right| \leq \int_{\alpha}^{b} |f| d\alpha$.

b) Suppose $c_n \ge 0$ for 1, 2, 3, ..., $\sum c_n$ converges, $\{s_n\}$ is a sequence of distinct Suppose points in (a, b) and $\alpha_{1,2}$, prove that $\int_{a}^{b} f d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$. UNIT – III points in (a, b) and $\alpha(x) = \sum c_n I(x - s_n)$. Let f be continuous on [a, b]. Then

- 13. a) Let $f \in R$ on [a, b]. For $a \le x \le b$, let $F(x) = \int f(t) dt$. Then prove that F is continuous on [a, b]. Also prove that if f is continuous at a point xo of [a, b], then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.
 - b) State and prove the fundamental theorem of calculus.
- 14. a) When can you say that a function f is said to be of Bounded Variation on [a, b] ? If t is monotonic on [a, b], then prove that f is of bounded variation [a, b].
 - b) If f is continuous on [a, b], and if f' exists and is bounded in the interior, say $|f'(x)| \le A$ for all x in (a, b), then prove that f is of bounded variation on [a, b].
 - c) If f is of bounded variation on [a, b], then prove that f is bounded on [a, b].
- 15. a) Define Rectifiable paths and its arc length. Consider a path f : [a, b] $\rightarrow R_n$ with components $f = (f_1, f_2, ..., f_n)$. Then prove that f is rectifiable if and only If each component fk is of bounded variation on [a, b]. Also if f is rectifiable, prove that $V_k(a, b) \le \Lambda_f(a, b) \le V_1(a, b) + ... + V_n(a, b)$ (k = 1, 2, ..., n).
 - b) If f' is continuous on [a, b], then prove that f is rectifiable and the arc length is $\Lambda_f(a, b) = \int ||f'(t)|| dt$.