K24U 0395

Reg. No. :	
Name :	

Sixth Semester B.Sc. Degree (C.B.C.S.S. - Supplementary/One Time Mercy Chance) Examination, April 2024 (2014 to 2018 Admissions) Core Course in Mathematics 6B13MAT : MATHEMATICAL ANALYSIS AND TOPOLOGY

Time: 3 Hours

Max. Marks: 48

Answer all the questions. Each question carries 1 mark.

1. If $P = \{a = x_0, x_1, x_2, \dots, x_n = b\}$ is a partition of [a, b], then the Riemann upper sum of a function f : [a, b] $\rightarrow R$, is

SECTION - A

- 2. Evaluate $\lim(f_n(x))$ where $f(x) = \frac{nx}{(1+n^2x^2)}$ for $x \in \mathbb{R}$, $n \in \mathbb{N}$.
- 3. A topological space is said to be separable if it has
- Let X be an arbitrary metric space and A ⊆ X. Then Int(A) =

 $(4 \times 1 = 4)$

SECTION - B

Answer any eight questions, Each question carries 2 marks.

- 5. If $h(x) = x^2$ on [0, 1] and $P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$ then find $\lim_{n \to \infty} (U(P_n, h) L(P_n, h))$. 6. If $f \in \mathbb{R}$ [a, b] and $|f(x)| \le M$ for all $x \in [a, b]$, then show that $\left|\int_a^b f\right| \le M(b a)$.
- Give an example for a bounded nonintegrable function on [0, 1].
- 8. Discuss the convergence of sequence (x^n) for $x \in \mathbb{R}$.
- 9. State Weierstrass M-Test.
- 10. Determine the radius of convergence of the power series $\Sigma \left(1 + \frac{1}{n}\right)^n x^n$.
- 11. Let X be a non-empty set and define d by $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$. Show that d is a metric on X.

P.T.O.

K24U 0395

- 12. Prove that in a metric space X, the complement of a closed set is open.
- 13. Prove that \overline{A} equals the intersection of all closed supersets of A.
- Show that the intersection of two topologies on a non-empty set X is also a topology on X. (8×2=16)

SECTION - C

Answer any four questions. Each question carries 4 marks.

- 15. Show that if $f:[a, b] \rightarrow R$ is monotone on [a, b], then f is integrable on [a, b].
- 16. State and prove the Fundamental Theorem of Calculus (First Form).
- 17. If $\{f_n\}$ is a sequence of continuous functions on a set $A \subseteq R$ converging uniformly on A to a function f : A $\rightarrow R$, then f is continuous on A.
- 18. Show that a subset of a topological space is perfect if and only if it is closed and has no isolated points.
- 19. If X is a complete metric space and Y is a subspace of X, prove that Y is complete if and only if it is closed.
- 20. Let X be an infinite set. Show that $T = \{U \subseteq X : U = \phi \text{ or } X \setminus U \text{ is finite}\}$ is a topology on X

 $(4 \times 4 = 16)$

SECTION - D

Answer any two questions. Each question carries 6 marks,

- 21. State and prove Riemann's Criterion for integrability.
- 22. Let (f_n) be a sequence of bounded functions on $A \subseteq R$. Prove that this sequence converges uniformly on A to a bounded function f if and only if for each $\epsilon > 0$ there is number $H(\epsilon)$ in N such that for all m, $n \ge H(\epsilon)$, then $||f_m f_n|| A \le \epsilon$.
- 23. Show that in a metric space X :
 - a) any union of open sets is open and
 - b) any finite intersection of open sets is open.
- 24. Let f : X → Y be a mapping of one topological space into another. Show that f is continuous if and only if f⁻¹ (F) is closed in X whenever F is closed in Y. (2×6=12)