

Reg. No. :

Name :

III Semester Master of Computer Application (M.C.A.)/M.C.A. (Lateral Entry) Degree (C.B.S.S. – Reg./Suppl.(Including Mercy Chance)/Imp.) Examination, November 2020 (2014 Admission Onwards) MCA 3C15 : THEORY OF COMPUTATION

Time : 3 Hours

Max. Marks: 80

SECTION - A

Answer any ten questions. Each question carries three marks.

- 1. What are the difference between DFA and NFA ?
- 2. Define grammar.
- 3. Design an accepter for integers in C
- 4. Obtain a regular expression to accept a language consisting of strings of a's and b's of odd length.
- 5. Write a note on derivation trees.
- 6. Explain context free grammars.
- 7. Explain Chomsky normal form.
 - 8. Explain pushdown automata.
 - 9. Write a note on turing's thesis.
 - 10. What are closure properties of CFL ?
 - 11. Write a note on turing machines with a stay-option.
 - 12. Write a note on turin machines with more complex storage. (10×3=30)

P.T.O.

K20P 1263

K20P 1263

SECTION - B

6

-2-

Answer all questions. Each question carries ten marks.

13. a) Define DFA and convert the following NFA to its equivalent DFA.

OR b) i) If r is a regular expression, then show that there exists some (5+5)nondeterministic finite accepter that accepts L(r). ii) Show that the language $L = \{awa : w \in \{a, b\}^*\}$ is regular. (6+4)14. a) i) Find a regular expression for the set A) {aⁿb^m:n≥3,m is even} B) {aⁿb^m:(n + m) is even} ii) Show that the language $L = \{a^nb^m : n \neq m\}$ is context-free. OR (4+6)i) Show that $L = \{ww^{R}: w \in \Sigma^{*}\}$ is not regular. ii) Prove that family of regular languages is closed under union, intersection and concatenation. 15. a) Eliminate useless symbols and productions from G = (V,T,S,P) where (5+5) $V = {S,A,B,C}$ and $T = {a, b}$ with P consisting of S→aS|A|C A→a, B→aa, C→aCb. OR

b) Construct an NPDA for the language
$$L = \{w \in \{a, b\}^* : n_a(w)=n_b(w)\}.$$

10

6.

17.

16. a) Sate and prove pumping lemma for context free languages.	K20P 1263
OR OR	
b) Design a Turing machine that accepts I	10
	10
i) Linear Bounded Automata.	(5.5)
ii) Universal Turing Machine.	(5+5)
OR	that is
V 31 - V 0.	10
P: 12005	(5×10=50)
b) Explain Turing machine halting problem with an example and prove undecidable.	

(P.T.O)

1: R

2

Jov. 202