

LIBRARY

K20P 1188

Name :

Reg. No. :

III Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, October 2020 (2017 Admission Onwards) MATHEMATICS MAT3C13 : Complex Function Theory

Time : 3 Hours

Max. Marks : 80

PART – A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Prove that an elliptic function without poles is a constant.
- 2. Exhibit the Legendre's relation $n_1\omega_2 n_2\omega_1 = 2\pi i$, where ω_1 , ω_2 are periods and n_1 , n_2 are constants.
- 3. Prove that elliptic function without poles is a constant.
- 4. Whether an analytic function on a region be expressed as limit of a sequence of polynomials. Justify your answer.
- 5. If u is harmonic, then show that $f = u_x iu_y$ is analytic.
- 6. Define Poisson kernel.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Prove that a discrete module consists either of zero alone, of the integral multiples $n\omega$ of a single complex number $\omega \neq 0$, or of all linear combinations $n_1\omega_1 + n_2\omega_2$ with integral coefficients of two numbers ω_1, ω_2 with non real ratio $\frac{\omega_2}{\omega_1}$.
 - b) Prove that the zeroes a_1, a_2, \ldots, a_n and poles b_1, b_2, \ldots, b_n of an elliptic function satisfy $a_1 + \ldots + a_n \equiv b_1 + \ldots + b_n \pmod{M}$.

 $(4 \times 4 = 16)$

K20P 1188

- 8. a) Prove that $\wp(z + u) = -\wp(z) \wp(u) + \frac{1}{4} \left(\frac{\wp'(z) \wp'(u)}{\wp(z) \wp(u)} \right)^2$.
 - b) Describe the Modular function $\lambda(\tau)$.
- 9. a) For Re z > 1, prove that $\zeta(z)\Gamma(z) = \int_{0}^{\infty} (e^{t} 1)^{-1} t^{z-1} dt$. b) State and prove Euler's theorem.

Unit – II

- 10. State and prove Runge's theorem.
- Let G be an open connected subset of C and if G is simply connected then prove that C_∞− G is connected.
- 12. State and prove Schwarz reflection principle.

Unit - III

- 13. a) Let u : G → ℝ be a harmonic function and let B

 (a; r) be a closed disk contained in G. If γ is the circle |z a| = r then prove that u(a) = 1/(2π) ∫₀^{2π} u(a + re^{iθ}) dθ.
 b) State and the circle |z a| = r then prove that u(a) = 1/(2π) ∫₀^{2π} u(a + re^{iθ}) dθ.
 - b) State and prove minimum principle.
- a) If u : G → R is a continuous function which has the mean value property then prove that u is harmonic.
 - b) State and prove Harnack's theorem.
- 15. a) Let G be a region and $f : \partial_{\infty} G \to \mathbb{R}$ a continuous function; then prove that $u(z) = \sup\{\phi(z): \phi \in \mathcal{P}(f, G)\}$ defines a harmonic function u on G.
 - b) Derive Jensen's formula.

 $(4 \times 16 = 64)$